
    Q?h'                        0 S S_SS_SS_SS_SS_S	S_S
S_SS_SS_SS_SS_SS_SS_SS_SS_SS_SS_0 SS_SS_SS_S S!_S"S#_S$S_S%S&_S'S(_S)S*_S+S,_S-S_S.S/_S0S1_S2S3_S4S_S5S6_S7S6_E0 S8S9_S:S;_S<S=_S>S=_S?S_S@SA_SBSA_SCS_SDS_SESF_SGSA_SHSA_SIS_SJS_SKSL_SMSN_SOS;_E0 SPSQ_SRSS_STSQ_SUSQ_SVSQ_SWSS_SXSQ_SYSQ_SZSQ_S[S_S\S]_S^S]_S_S]_S`S_SaS]_SbS]_ScS]_E0 SdSe_SfSg_ShS;_SiS_SjS_SkSl_SmSn_SoSp_SqS;_SrS9_SsS9_StSu_SvSQ_SwSl_SxS;_SySp_SzSL_E0 S{S|_S}SF_S~S/_SS_SS;_SS;_SS_SS_SS;_SSL_SSL_SSL_SS_SS_SS|_SS;_SS;_E0 SSl_SS|_SS_SS_SS_SS_SS_SS6_SS;_SS;_SS;_SS;_SS_SS|_SS_SSQ_SS;_E0 SS_SS_SS;_SSL_SS|_SS;_SS|_SS_SSL_SS_SS|_SS;_SSL_SS_SS]_SS]_SS]_E0 SS_SS]_SS]_SS]_SSQ_SS_SSp_SSg_SS_SS_SS;_SS;_SS;_SS/_SS|_SS|_SS|_E0 SS_SS_SS;_SSL_SS|_SS|_SS9_SS9_SS;_SS_SSn_SSL_SS_SS_SS;_SSL_SSn_E0 SSp_SSl_SS_SS|_SS_SS_SS_SS1_SSL_SS_SS_SSL_SSL_SS_SS|_SS_SSA_ESSLSQS.Er g)Alphai  Betai  ChiDeltaid  Epsilonic  EtaEuroi  Gammai[  Ifrakturi  IotaiM  KappaLambdaMuiy  NuOmegai   OmicronPhii  PiPsii  RfrakturRhoi,  SigmaiP  TauThetai  Upsiloni  Upsilon1il  Xii  Zetaalephi7  alphaiw  	ampersandi
  angle	angleleftiI  
anglerightapplei  approxequali%  	arrowbothi  arrowdblbotharrowdbldownarrowdbllefti  arrowdblright
arrowdblup	arrowdownarrowhorizexi  	arrowleft
arrowrightarrowuparrowvertexasteriskmathi  bar   betabraceexi  	bracelefti  braceleftbtbraceleftmidbracelefttp
bracerightbracerightbtbracerightmidbracerighttpbracketleftbracketleftbti  bracketleftexbracketlefttpbracketrightbracketrightbtbracketrightexbracketrighttpbulleti  carriagereturni  chicirclemultiply
circleplusclubi  coloni  comma   	congruentcopyrightsanscopyrightserifdegreei  deltadiamonddividedotmatheightelementi  ellipsisemptysetepsiloni  equalequivalenceetaexclamexistentialfiveflorinfourfraction   gammai  gradientgreatergreaterequalheartinfinityintegrali  
integralbt
integralex
integraltpintersectioniotakappalambdaless	lessequal
logicaland
logicalnot	logicalorlozengeminusminute   mui@  multiplynine
notelementnotequal	notsubsetnui	  
numbersignomegaomega1omicronone	parenleftparenleftbtparenleftexparenlefttp
parenrightparenrightbtparenrightexparenrighttppartialdiffpercentiA  periodperpendicularphiphi1piplus	plusminusproductpropersubsetpropersupersetproportionalpsiquestioni  radical	radicalexreflexsubsetreflexsupersetregistersansregisterserifrhosecond	semicolonsevensigmasigma1similarsixslashspacespadesuchthat	summationtau	thereforei_  thetatheta1threetrademarksansi  trademarkserifiz  two
underscoreunion	universalupsilonweierstrassi  )xizerozetaN)widths     [/var/www/html/env/lib/python3.13/site-packages/reportlab/pdfbase/_fontdata_widths_symbol.py<module>r      s
  }
'3 }
}
}
 	#}
 C	}

 }
 }
 	#}
 S}
 }
 	#}
 
3}
 s}
 s}
 	#}
 C}
  !}
" s#}
$ %}
& S'}
( )}
* 	#+}
, -}
. 	#/}
0 C1}
2 S3}
4 s5}
6 7}
8 	#9}
: 	#;}
< c=}
> 	#?}
@ cA}
B sC}
D 	#E}
F G}
H dI}
J K}
L M}
N O}
P #Q}
R sS}
T cU}
V W}
X cY}
Z s[}
\ C]}
^ _}
` a}
b c}
d e}
f Cg}
h ci}
j k}
l m}
n o}
p sq}
r s}
t #u}
v w}
x y}
z #{}
| #}}
~ #}
@ A}
B 3C}
D 3E}
F 3G}
H 
3I}
J 3K}
L M}
N 3O}
P sQ}
R S}
T 	#U}
V 	#W}
X cY}
Z #[}
\ 3]}
^ 
3_}
` 	#a}
b Cc}
d 
3e}
f Cg}
h 	#i}
j Ck}
l Tm}
n So}
p Cq}
r 	#s}
t u}
v w}
x 
3y}
z {}
| }}
~ 
3}
@ A}
B SC}
D 	#E}
F SG}
H CI}
J K}
L 	#M}
N SO}
P SQ}
R sS}
T sU}
V sW}
X Y}
Z [}
\ 	#]}
^ 
3_}
` a}
b cc}
d se}
f sg}
h ci}
j Ck}
l 	#m}
n 
3o}
p sq}
r Ss}
t u}
v sw}
x Sy}
z c{}
| s}}
~ s}
@ 	#A}
B 
3C}
D CE}
F G}
H cI}
J K}
L M}
N O}
P sQ}
R S}
T U}
V W}
X Y}
Z C[}
\ 
3]}
^ #_}
` a}
b c}
d se}
f g}
h ci}
j Ck}
l m}
n 3o}
p q}
r s}
t Su}
v Cw}
x cy}
z {}
| 3}}
~ }
@ #A}
B C}
D 
3E}
F cG}
H 	#I}
J 	#K}
L 
3M}
N CO}
P Q}
R 	#S}
T 	#U}
V 	#W}
X SY}
Z c[}
\ ]}
^ c_}
` 	#a}
b 
3c}
d 	#e}
f #g}
h 3i}
j k}
l sm}
n 	#o}
p cq}
r Cs}
t u}
v 		{}
r   