
    MhQ                       S SK Jr  S SKJr  S SKJrJr  S SKJr  \(       a,  S SK	J
r
Jr  S SKJr  S SKJr  S SKJr  S S	KJr  S S
KrS SKJrJr  SS jrSS jrSS jr         S                     SS jjr   S           SS jjr    S             SS jjr   S          S!S jjr         S"                       S#S jjr S$S%S jjr!S&S'S jjr" " S S\#5      r$\$" 5       r%g
)(    )annotations)contextmanager)TYPE_CHECKINGAny)_get_plot_backend)	GeneratorMapping)Axes)Colormap)Figure)TableN)	DataFrameSeriesc                D    [        S5      nUR                  " SXSSS.UD6$ )a  
Helper function to convert DataFrame and Series to matplotlib.table.

Parameters
----------
ax : Matplotlib axes object
data : DataFrame or Series
    Data for table contents.
**kwargs
    Keyword arguments to be passed to matplotlib.table.table.
    If `rowLabels` or `colLabels` is not specified, data index or column
    name will be used.

Returns
-------
matplotlib table object

Examples
--------

.. plot::
        :context: close-figs

        >>> import matplotlib.pyplot as plt
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
        >>> fix, ax = plt.subplots()
        >>> ax.axis('off')
        (0.0, 1.0, 0.0, 1.0)
        >>> table = pd.plotting.table(ax, df, loc='center',
        ...                           cellLoc='center', colWidths=list([.2, .2]))

matplotlibN)axdata	rowLabels	colLabels )r   table)r   r   kwargsplot_backends       G/var/www/html/env/lib/python3.13/site-packages/pandas/plotting/_misc.pyr   r      s6    @ %\2L DD<B     c                 :    [        S5      n U R                  5         g)a2  
Register pandas formatters and converters with matplotlib.

This function modifies the global ``matplotlib.units.registry``
dictionary. pandas adds custom converters for

* pd.Timestamp
* pd.Period
* np.datetime64
* datetime.datetime
* datetime.date
* datetime.time

See Also
--------
deregister_matplotlib_converters : Remove pandas formatters and converters.

Examples
--------
.. plot::
   :context: close-figs

    The following line is done automatically by pandas so
    the plot can be rendered:

    >>> pd.plotting.register_matplotlib_converters()

    >>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
    ...                    'y': [1, 2]
    ...                    })
    >>> plot = df.plot.line(x='ts', y='y')

Unsetting the register manually an error will be raised:

>>> pd.set_option("plotting.matplotlib.register_converters",
...               False)  # doctest: +SKIP
>>> df.plot.line(x='ts', y='y')  # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
r   N)r   registerr   s    r   r   r   C   s    R %\2Lr   c                 :    [        S5      n U R                  5         g)a  
Remove pandas formatters and converters.

Removes the custom converters added by :func:`register`. This
attempts to set the state of the registry back to the state before
pandas registered its own units. Converters for pandas' own types like
Timestamp and Period are removed completely. Converters for types
pandas overwrites, like ``datetime.datetime``, are restored to their
original value.

See Also
--------
register_matplotlib_converters : Register pandas formatters and converters
    with matplotlib.

Examples
--------
.. plot::
   :context: close-figs

    The following line is done automatically by pandas so
    the plot can be rendered:

    >>> pd.plotting.register_matplotlib_converters()

    >>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
    ...                    'y': [1, 2]
    ...                    })
    >>> plot = df.plot.line(x='ts', y='y')

Unsetting the register manually an error will be raised:

>>> pd.set_option("plotting.matplotlib.register_converters",
...               False)  # doctest: +SKIP
>>> df.plot.line(x='ts', y='y')  # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
r   N)r   
deregisterr   s    r   r    r    p   s    N %\2Lr   c
                R    [        S5      nUR                  " SU UUUUUUUUU	S.
U
D6$ )a  
Draw a matrix of scatter plots.

Parameters
----------
frame : DataFrame
alpha : float, optional
    Amount of transparency applied.
figsize : (float,float), optional
    A tuple (width, height) in inches.
ax : Matplotlib axis object, optional
grid : bool, optional
    Setting this to True will show the grid.
diagonal : {'hist', 'kde'}
    Pick between 'kde' and 'hist' for either Kernel Density Estimation or
    Histogram plot in the diagonal.
marker : str, optional
    Matplotlib marker type, default '.'.
density_kwds : keywords
    Keyword arguments to be passed to kernel density estimate plot.
hist_kwds : keywords
    Keyword arguments to be passed to hist function.
range_padding : float, default 0.05
    Relative extension of axis range in x and y with respect to
    (x_max - x_min) or (y_max - y_min).
**kwargs
    Keyword arguments to be passed to scatter function.

Returns
-------
numpy.ndarray
    A matrix of scatter plots.

Examples
--------

.. plot::
    :context: close-figs

    >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
    >>> pd.plotting.scatter_matrix(df, alpha=0.2)
    array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>,
            <Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>],
           [<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>,
            <Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>],
           [<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>,
            <Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>],
           [<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>,
            <Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]],
          dtype=object)
r   )
framealphafigsizer   griddiagonalmarkerdensity_kwds	hist_kwdsrange_paddingr   )r   scatter_matrix)r"   r#   r$   r   r%   r&   r'   r(   r)   r*   r   r   s               r   r+   r+      sO    @ %\2L&& !#  r   c           	     H    [        S5      nUR                  " SU UUUUS.UD6$ )a  
Plot a multidimensional dataset in 2D.

Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
the value on each Series. Highly correlated `Series` in the `DataFrame`
are placed closer on the unit circle.

RadViz allow to project a N-dimensional data set into a 2D space where the
influence of each dimension can be interpreted as a balance between the
influence of all dimensions.

More info available at the `original article
<https://doi.org/10.1145/331770.331775>`_
describing RadViz.

Parameters
----------
frame : `DataFrame`
    Object holding the data.
class_column : str
    Column name containing the name of the data point category.
ax : :class:`matplotlib.axes.Axes`, optional
    A plot instance to which to add the information.
color : list[str] or tuple[str], optional
    Assign a color to each category. Example: ['blue', 'green'].
colormap : str or :class:`matplotlib.colors.Colormap`, default None
    Colormap to select colors from. If string, load colormap with that
    name from matplotlib.
**kwds
    Options to pass to matplotlib scatter plotting method.

Returns
-------
:class:`matplotlib.axes.Axes`

See Also
--------
pandas.plotting.andrews_curves : Plot clustering visualization.

Examples
--------

.. plot::
    :context: close-figs

    >>> df = pd.DataFrame(
    ...     {
    ...         'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6],
    ...         'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6],
    ...         'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0],
    ...         'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2],
    ...         'Category': [
    ...             'virginica',
    ...             'virginica',
    ...             'setosa',
    ...             'virginica',
    ...             'virginica',
    ...             'versicolor',
    ...             'versicolor',
    ...             'setosa',
    ...             'virginica',
    ...             'setosa'
    ...         ]
    ...     }
    ... )
    >>> pd.plotting.radviz(df, 'Category')  # doctest: +SKIP
r   )r"   class_columnr   colorcolormapr   )r   radviz)r"   r-   r   r.   r/   kwdsr   s          r   r0   r0      s@    X %\2L !  r   c           
     J    [        S5      nUR                  " SU UUUUUS.UD6$ )a~  
Generate a matplotlib plot for visualizing clusters of multivariate data.

Andrews curves have the functional form:

.. math::
    f(t) = \frac{x_1}{\sqrt{2}} + x_2 \sin(t) + x_3 \cos(t) +
    x_4 \sin(2t) + x_5 \cos(2t) + \cdots

Where :math:`x` coefficients correspond to the values of each dimension
and :math:`t` is linearly spaced between :math:`-\pi` and :math:`+\pi`.
Each row of frame then corresponds to a single curve.

Parameters
----------
frame : DataFrame
    Data to be plotted, preferably normalized to (0.0, 1.0).
class_column : label
    Name of the column containing class names.
ax : axes object, default None
    Axes to use.
samples : int
    Number of points to plot in each curve.
color : str, list[str] or tuple[str], optional
    Colors to use for the different classes. Colors can be strings
    or 3-element floating point RGB values.
colormap : str or matplotlib colormap object, default None
    Colormap to select colors from. If a string, load colormap with that
    name from matplotlib.
**kwargs
    Options to pass to matplotlib plotting method.

Returns
-------
:class:`matplotlib.axes.Axes`

Examples
--------

.. plot::
    :context: close-figs

    >>> df = pd.read_csv(
    ...     'https://raw.githubusercontent.com/pandas-dev/'
    ...     'pandas/main/pandas/tests/io/data/csv/iris.csv'
    ... )
    >>> pd.plotting.andrews_curves(df, 'Name')  # doctest: +SKIP
r   )r"   r-   r   samplesr.   r/   r   )r   andrews_curves)r"   r-   r   r3   r.   r/   r   r   s           r   r4   r4   B  sC    r %\2L&& !  r   c                B    [        S5      nUR                  " SXX#S.UD6$ )a  
Bootstrap plot on mean, median and mid-range statistics.

The bootstrap plot is used to estimate the uncertainty of a statistic
by relying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.

.. [1] "Bootstrapping (statistics)" in     https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29

Parameters
----------
series : pandas.Series
    Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
    If given, it will use the `fig` reference for plotting instead of
    creating a new one with default parameters.
size : int, default 50
    Number of data points to consider during each sampling. It must be
    less than or equal to the length of the `series`.
samples : int, default 500
    Number of times the bootstrap procedure is performed.
**kwds
    Options to pass to matplotlib plotting method.

Returns
-------
matplotlib.figure.Figure
    Matplotlib figure.

See Also
--------
pandas.DataFrame.plot : Basic plotting for DataFrame objects.
pandas.Series.plot : Basic plotting for Series objects.

Examples
--------
This example draws a basic bootstrap plot for a Series.

.. plot::
    :context: close-figs

    >>> s = pd.Series(np.random.uniform(size=100))
    >>> pd.plotting.bootstrap_plot(s)  # doctest: +SKIP
    <Figure size 640x480 with 6 Axes>
r   )seriesfigsizer3   r   )r   bootstrap_plot)r6   r7   r8   r3   r1   r   s         r   r9   r9     s4    l %\2L&& T>B r   c                T    [        S5      nUR                  " SU UUUUUUUUU	U
S.UD6$ )a   
Parallel coordinates plotting.

Parameters
----------
frame : DataFrame
class_column : str
    Column name containing class names.
cols : list, optional
    A list of column names to use.
ax : matplotlib.axis, optional
    Matplotlib axis object.
color : list or tuple, optional
    Colors to use for the different classes.
use_columns : bool, optional
    If true, columns will be used as xticks.
xticks : list or tuple, optional
    A list of values to use for xticks.
colormap : str or matplotlib colormap, default None
    Colormap to use for line colors.
axvlines : bool, optional
    If true, vertical lines will be added at each xtick.
axvlines_kwds : keywords, optional
    Options to be passed to axvline method for vertical lines.
sort_labels : bool, default False
    Sort class_column labels, useful when assigning colors.
**kwargs
    Options to pass to matplotlib plotting method.

Returns
-------
matplotlib.axes.Axes

Examples
--------

.. plot::
    :context: close-figs

    >>> df = pd.read_csv(
    ...     'https://raw.githubusercontent.com/pandas-dev/'
    ...     'pandas/main/pandas/tests/io/data/csv/iris.csv'
    ... )
    >>> pd.plotting.parallel_coordinates(
    ...     df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
    ... )  # doctest: +SKIP
r   )r"   r-   colsr   r.   use_columnsxticksr/   axvlinesaxvlines_kwdssort_labelsr   )r   parallel_coordinates)r"   r-   r;   r   r.   r<   r=   r/   r>   r?   r@   r   r   s                r   rA   rA     sR    z %\2L,, !#  r   c                B    [        S5      nUR                  " SXUS.UD6$ )a  
Lag plot for time series.

Parameters
----------
series : Series
    The time series to visualize.
lag : int, default 1
    Lag length of the scatter plot.
ax : Matplotlib axis object, optional
    The matplotlib axis object to use.
**kwds
    Matplotlib scatter method keyword arguments.

Returns
-------
matplotlib.axes.Axes

Examples
--------
Lag plots are most commonly used to look for patterns in time series data.

Given the following time series

.. plot::
    :context: close-figs

    >>> np.random.seed(5)
    >>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
    >>> s = pd.Series(x)
    >>> s.plot()  # doctest: +SKIP

A lag plot with ``lag=1`` returns

.. plot::
    :context: close-figs

    >>> pd.plotting.lag_plot(s, lag=1)
    <Axes: xlabel='y(t)', ylabel='y(t + 1)'>
r   )r6   lagr   r   )r   lag_plot)r6   rC   r   r1   r   s        r   rD   rD     s*    R %\2L  GBG$GGr   c                @    [        S5      nUR                  " SXS.UD6$ )a  
Autocorrelation plot for time series.

Parameters
----------
series : Series
    The time series to visualize.
ax : Matplotlib axis object, optional
    The matplotlib axis object to use.
**kwargs
    Options to pass to matplotlib plotting method.

Returns
-------
matplotlib.axes.Axes

Examples
--------
The horizontal lines in the plot correspond to 95% and 99% confidence bands.

The dashed line is 99% confidence band.

.. plot::
    :context: close-figs

    >>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
    >>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
    >>> pd.plotting.autocorrelation_plot(s)  # doctest: +SKIP
r   )r6   r   r   )r   autocorrelation_plot)r6   r   r   r   s       r   rF   rF   >  s'    < %\2L,,LFLVLLr   c                     ^  \ rS rSrSrSS0rS/rSSU 4S jjjrU 4S jrSU 4S jjr	SU 4S jjr
SU 4S	 jjrSS
 jrS r\SS j5       rSrU =r$ )_Optionsi`  a  
Stores pandas plotting options.

Allows for parameter aliasing so you can just use parameter names that are
the same as the plot function parameters, but is stored in a canonical
format that makes it easy to breakdown into groups later.

Examples
--------

.. plot::
        :context: close-figs

         >>> np.random.seed(42)
         >>> df = pd.DataFrame({'A': np.random.randn(10),
         ...                   'B': np.random.randn(10)},
         ...                   index=pd.date_range("1/1/2000",
         ...                   freq='4MS', periods=10))
         >>> with pd.plotting.plot_params.use("x_compat", True):
         ...     _ = df["A"].plot(color="r")
         ...     _ = df["B"].plot(color="g")
x_compatxaxis.compatc                2   > Xl         [        TU ]	  SS5        g )NrJ   F)_deprecatedsuper__setitem__)self
deprecated	__class__s     r   __init___Options.__init__|  s    %NE2r   c                j   > U R                  U5      nX;  a  [        U S35      e[        TU ]  U5      $ )Nz& is not a valid pandas plotting option)_get_canonical_key
ValueErrorrM   __getitem__rO   keyrQ   s     r   rW   _Options.__getitem__  s;    %%c*?u$JKLLw"3''r   c                F   > U R                  U5      n[        TU ]	  X5        g N)rU   rM   rN   )rO   rY   valuerQ   s      r   rN   _Options.__setitem__  s     %%c*C'r   c                   > U R                  U5      nXR                  ;   a  [        SU 35      e[        TU ]  U5        g )Nz Cannot remove default parameter )rU   _DEFAULT_KEYSrV   rM   __delitem__rX   s     r   ra   _Options.__delitem__  s?    %%c*$$$?uEFFC r   c                D   > U R                  U5      n[        TU ]	  U5      $ r\   )rU   rM   __contains__rX   s     r   rd   _Options.__contains__  s#    %%c*w#C((r   c                $    U R                  5         g)zC
Reset the option store to its initial state

Returns
-------
None
N)rR   )rO   s    r   reset_Options.reset  s     	r   c                8    U R                   R                  X5      $ r\   )_ALIASESget)rO   rY   s     r   rU   _Options._get_canonical_key  s    }}  **r   c              #  @   #    X   n X U'   U v   X0U'   g! X0U'   f = f7f)zO
Temporarily set a parameter value using the with statement.
Aliasing allowed.
Nr   )rO   rY   r]   	old_values       r   use_Options.use  s-      I		"IJ!I	Is    )rL   )F)rP   boolreturnNonerr   rs   )rr   rq   )rr   zGenerator[_Options, None, None])__name__
__module____qualname____firstlineno____doc__rj   r`   rR   rW   rN   ra   rd   rg   rU   r   ro   __static_attributes____classcell__)rQ   s   @r   rH   rH   `  sX    0 N+H#$M3 3((!)	+ 
" 
"r   rH   )r   r
   r   zDataFrame | Seriesrr   r   rt   )	g      ?NNFhist.NNg?)r"   r   r#   floatr$   ztuple[float, float] | Noner   Axes | Noner%   rq   r&   strr'   r   r(   Mapping[str, Any] | Noner)   r   r*   r~   rr   z
np.ndarray)NNN)r"   r   r-   r   r   r   r.   "list[str] | tuple[str, ...] | Noner/   Colormap | str | Nonerr   r
   )N   NN)r"   r   r-   r   r   r   r3   intr.   r   r/   r   rr   r
   )N2   i  )
r6   r   r7   zFigure | Noner8   r   r3   r   rr   r   )	NNNFNNTNF)r"   r   r-   r   r;   zlist[str] | Noner   r   r.   r   r<   rq   r=   zlist | tuple | Noner/   r   r>   rq   r?   r   r@   rq   rr   r
   )   N)r6   r   rC   r   r   r   rr   r
   r\   )r6   r   r   r   rr   r
   )&
__future__r   
contextlibr   typingr   r   pandas.plotting._corer   collections.abcr   r	   matplotlib.axesr
   matplotlib.colorsr   matplotlib.figurer   matplotlib.tabler   numpynppandasr   r   r   r   r    r+   r0   r4   r9   rA   rD   rF   dictrH   plot_paramsr   r   r   <module>r      s   " %
 4
 %*(&#L*Z(Z *.-1*.MMM (M 		M
 M M M +M (M M Mf 04&*TTT 	T .	T
 $T 
Tt 04&*BBB 	B 	B
 .B $B 
BN 	99	9 9 	9 9~ "04"&&*.2KKK K 		K
 .K K  K $K K ,K K 
K\*HZMDM"t M"` jr   