
    Kh)                         S SK r \ R                  " S\SS9  S SKrS SKJrJr  S SK7  \R                  r\R                  SS r	\	/ SQ-  r	SS	 jr
SS
 jrSS jrSS jrSS \S4S jrS rS rS rg)    Na  Importing from numpy.matlib is deprecated since 1.19.0. The matrix subclass is not the recommended way to represent matrices or deal with linear algebra (see https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). Please adjust your code to use regular ndarray.    )
stacklevel)matrixasmatrix)*)randrandnrepmatCc                 4    [         R                  [        XUS9$ )a  Return a new matrix of given shape and type, without initializing entries.

Parameters
----------
shape : int or tuple of int
    Shape of the empty matrix.
dtype : data-type, optional
    Desired output data-type.
order : {'C', 'F'}, optional
    Whether to store multi-dimensional data in row-major
    (C-style) or column-major (Fortran-style) order in
    memory.

See Also
--------
numpy.empty : Equivalent array function.
matlib.zeros : Return a matrix of zeros.
matlib.ones : Return a matrix of ones.

Notes
-----
Unlike other matrix creation functions (e.g. `matlib.zeros`,
`matlib.ones`), `matlib.empty` does not initialize the values of the
matrix, and may therefore be marginally faster. However, the values
stored in the newly allocated matrix are arbitrary. For reproducible
behavior, be sure to set each element of the matrix before reading.

Examples
--------
>>> import numpy.matlib
>>> np.matlib.empty((2, 2))    # filled with random data
matrix([[  6.76425276e-320,   9.79033856e-307], # random
        [  7.39337286e-309,   3.22135945e-309]])
>>> np.matlib.empty((2, 2), dtype=int)
matrix([[ 6600475,        0], # random
        [ 6586976, 22740995]])

order)ndarray__new__r   )shapedtyper   s      >/var/www/html/env/lib/python3.13/site-packages/numpy/matlib.pyemptyr      s    N ??65u?==    c                 Z    [         R                  [        XUS9nUR                  S5        U$ )a  
Matrix of ones.

Return a matrix of given shape and type, filled with ones.

Parameters
----------
shape : {sequence of ints, int}
    Shape of the matrix
dtype : data-type, optional
    The desired data-type for the matrix, default is np.float64.
order : {'C', 'F'}, optional
    Whether to store matrix in C- or Fortran-contiguous order,
    default is 'C'.

Returns
-------
out : matrix
    Matrix of ones of given shape, dtype, and order.

See Also
--------
ones : Array of ones.
matlib.zeros : Zero matrix.

Notes
-----
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,
`out` becomes a single row matrix of shape ``(1,N)``.

Examples
--------
>>> np.matlib.ones((2,3))
matrix([[1.,  1.,  1.],
        [1.,  1.,  1.]])

>>> np.matlib.ones(2)
matrix([[1.,  1.]])

r      r   r   r   fillr   r   r   as       r   onesr   A   s)    R 	E:AFF1IHr   c                 Z    [         R                  [        XUS9nUR                  S5        U$ )a2  
Return a matrix of given shape and type, filled with zeros.

Parameters
----------
shape : int or sequence of ints
    Shape of the matrix
dtype : data-type, optional
    The desired data-type for the matrix, default is float.
order : {'C', 'F'}, optional
    Whether to store the result in C- or Fortran-contiguous order,
    default is 'C'.

Returns
-------
out : matrix
    Zero matrix of given shape, dtype, and order.

See Also
--------
numpy.zeros : Equivalent array function.
matlib.ones : Return a matrix of ones.

Notes
-----
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,
`out` becomes a single row matrix of shape ``(1,N)``.

Examples
--------
>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
matrix([[0.,  0.,  0.],
        [0.,  0.,  0.]])

>>> np.matlib.zeros(2)
matrix([[0.,  0.]])

r   r   r   r   s       r   zerosr   n   s)    P 	E:AFF1IHr   c                 L    [        S/U S/-  -   US9n[        X 4US9nX#l        U$ )aA  
Returns the square identity matrix of given size.

Parameters
----------
n : int
    Size of the returned identity matrix.
dtype : data-type, optional
    Data-type of the output. Defaults to ``float``.

Returns
-------
out : matrix
    `n` x `n` matrix with its main diagonal set to one,
    and all other elements zero.

See Also
--------
numpy.identity : Equivalent array function.
matlib.eye : More general matrix identity function.

Examples
--------
>>> import numpy.matlib
>>> np.matlib.identity(3, dtype=int)
matrix([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])

r   r   )r   )arrayr   flat)nr   r   bs       r   identityr$      s4    > 	qc!QC%iu%AqfE"AFHr   c           
      @    [        [        R                  " XX#US95      $ )a  
Return a matrix with ones on the diagonal and zeros elsewhere.

Parameters
----------
n : int
    Number of rows in the output.
M : int, optional
    Number of columns in the output, defaults to `n`.
k : int, optional
    Index of the diagonal: 0 refers to the main diagonal,
    a positive value refers to an upper diagonal,
    and a negative value to a lower diagonal.
dtype : dtype, optional
    Data-type of the returned matrix.
order : {'C', 'F'}, optional
    Whether the output should be stored in row-major (C-style) or
    column-major (Fortran-style) order in memory.

Returns
-------
I : matrix
    A `n` x `M` matrix where all elements are equal to zero,
    except for the `k`-th diagonal, whose values are equal to one.

See Also
--------
numpy.eye : Equivalent array function.
identity : Square identity matrix.

Examples
--------
>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
matrix([[0.,  1.,  0.],
        [0.,  0.,  1.],
        [0.,  0.,  0.]])

)Mkr   r   )r   npeye)r"   r&   r'   r   r   s        r   r)   r)      s    P BFF1Q5ABBr   c                      [        U S   [        5      (       a  U S   n [        [        R                  R
                  " U 6 5      $ )a   
Return a matrix of random values with given shape.

Create a matrix of the given shape and propagate it with
random samples from a uniform distribution over ``[0, 1)``.

Parameters
----------
\*args : Arguments
    Shape of the output.
    If given as N integers, each integer specifies the size of one
    dimension.
    If given as a tuple, this tuple gives the complete shape.

Returns
-------
out : ndarray
    The matrix of random values with shape given by `\*args`.

See Also
--------
randn, numpy.random.RandomState.rand

Examples
--------
>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
matrix([[0.69646919, 0.28613933, 0.22685145],
        [0.55131477, 0.71946897, 0.42310646]])
>>> np.matlib.rand((2, 3))
matrix([[0.9807642 , 0.68482974, 0.4809319 ],
        [0.39211752, 0.34317802, 0.72904971]])

If the first argument is a tuple, other arguments are ignored:

>>> np.matlib.rand((2, 3), 4)
matrix([[0.43857224, 0.0596779 , 0.39804426],
        [0.73799541, 0.18249173, 0.17545176]])

r   )
isinstancetupler   r(   randomr   argss    r   r   r      s7    T $q'5!!AwBIINND)**r   c                      [        U S   [        5      (       a  U S   n [        [        R                  R
                  " U 6 5      $ )a  
Return a random matrix with data from the "standard normal" distribution.

`randn` generates a matrix filled with random floats sampled from a
univariate "normal" (Gaussian) distribution of mean 0 and variance 1.

Parameters
----------
\*args : Arguments
    Shape of the output.
    If given as N integers, each integer specifies the size of one
    dimension. If given as a tuple, this tuple gives the complete shape.

Returns
-------
Z : matrix of floats
    A matrix of floating-point samples drawn from the standard normal
    distribution.

See Also
--------
rand, numpy.random.RandomState.randn

Notes
-----
For random samples from the normal distribution with mean ``mu`` and
standard deviation ``sigma``, use::

    sigma * np.matlib.randn(...) + mu

Examples
--------
>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-1.0856306]])
>>> np.matlib.randn(1, 2, 3)
matrix([[ 0.99734545,  0.2829785 , -1.50629471],
        [-0.57860025,  1.65143654, -2.42667924]])

Two-by-four matrix of samples from the normal distribution with
mean 3 and standard deviation 2.5:

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],
        [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]])

r   )r+   r,   r   r(   r-   r	   r.   s    r   r	   r	     s7    b $q'5!!AwBIIOOT*++r   c                 X   [        U 5      n U R                  nUS:X  a  Su  pEO%US:X  a  SU R                  S   pTOU R                  u  pEXA-  nXR-  nU R                  SU R                  5      R                  US5      R                  Xe5      R                  US5      nUR                  Xg5      $ )a  
Repeat a 0-D to 2-D array or matrix MxN times.

Parameters
----------
a : array_like
    The array or matrix to be repeated.
m, n : int
    The number of times `a` is repeated along the first and second axes.

Returns
-------
out : ndarray
    The result of repeating `a`.

Examples
--------
>>> import numpy.matlib
>>> a0 = np.array(1)
>>> np.matlib.repmat(a0, 2, 3)
array([[1, 1, 1],
       [1, 1, 1]])

>>> a1 = np.arange(4)
>>> np.matlib.repmat(a1, 2, 2)
array([[0, 1, 2, 3, 0, 1, 2, 3],
       [0, 1, 2, 3, 0, 1, 2, 3]])

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
>>> np.matlib.repmat(a2, 2, 3)
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],
        [3, 4, 5, 3, 4, 5, 3, 4, 5],
        [0, 1, 2, 0, 1, 2, 0, 1, 2],
        [3, 4, 5, 3, 4, 5, 3, 4, 5]])

r   )r   r   r   )
asanyarrayndimr   reshapesizerepeat)	r   mr"   r3   origrowsorigcolsrowscolscs	            r   r
   r
   K  s    J 	1A66Dqy#(	(WW<D<D			!QVV##Aq)11$AHHANA99T  r   )Nr   )N)warningswarnPendingDeprecationWarningnumpyr(   numpy.matrixlib.defmatrixr   r   __version____all__r   r   r   r$   floatr)   r   r	   r
    r   r   <module>rF      s     	 A
 (A7  6 nn
**Q- & &'>R+Z*X"H AU# (CT,+\3,j0!r   