
    KhV              
          S r SSKrSSKrSSKrSSKJrJr  SSKJr  SSK	J
r
  SSK
Jr   \  \(       a  \R                  R                  S	5        G
OSS
K	Jr   SSKJr  SSK	Jr  SSKJrJrJrJrJrJrJrJrJrJ r J!r!J"r"J#r#J$r$J%r%J&r&J'r'J(r(J)r)J*r*J+r+J,r,J-r-J.r.J/r/J0r0J1r1J2r2J3r3J4r4J5r5J6r6J7r7J8r8J9r9J:r:J;r;J<r<J=r=J>r>J?r?J@r@JArAJBrBJCrCJDrDJErEJFrFJGrGJHrHJIrIJJrJJKrKJLrLJMrMJNrNJOrOJPrPJQrQJRrRJSrSJTrTJUrUJVrVJWrWJXrXJYrYJZrZJ[r[J\r\J]r]J^r^J_r_J`r`JaraJbrbJcrcJdrdJereJfrfJgrgJhrhJiriJjrjJkrkJlrlJmrmJnrnJoroJprpJqrqJrrrJsrsJtrtJuruJvrvJwrwJxrxJyryJzrzJ{r{J|r|J}r}J~r~JrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrGJ Gr GJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJ	Gr	GJ
Gr
GJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJ Gr GJ!Gr!GJ"Gr"GJ#Gr#GJ$Gr$GJ%Gr%GJ&Gr&GJ'Gr'GJ(Gr(GJ)Gr)GJ*Gr*GJ+Gr+GJ,Gr,GJ-Gr-GJ.Gr.GJ/Gr/GJ0Gr0GJ1Gr1GJ2Gr2GJ3Gr3GJ4Gr4GJ5Gr5GJ6Gr6GJ7Gr7GJ8Gr8GJ9Gr9GJ:Gr:GJ;Gr;GJ<Gr<GJ=Gr=GJ>Gr>GJ?Gr?GJ@Gr@GJAGrAGJBGrBGJCGrCGJDGrDGJEGrEGJFGrFGJGGrGGJHGrHGJIGrIGJJGrJGJKGrKGJLGrLGJMGrMGJNGrNGJOGrOGJPGrPGJQGrQGJRGrRGJSGrSGJTGrTGJUGrUGJVGrVGJWGrW  S H  GrX G\Y" \G\X5      G\Z" 5       G\X'   M     GCXSSK	GJ\Gr\  SSGK\GJ]Gr^  SSGK_GJ`Gr`GJaGraGJbGrb  SSGKcGJdGrdGJeGreGJfGrfGJgGrgGJhGrhGJiGriGJjGrjGJkGrkGJlGrlGJmGrmGJnGrnGJoGroGJpGrpGJqGrq  SSGKrGJsGrsGJtGrtGJuGruGJvGrvGJwGrwGJxGrxGJyGryGJzGrzGJ{Gr{GJ|Gr|GJ}Gr}GJ~Gr~GJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGr  SSGKGJGr  SSGKGJGrGJGrGJGr  SSGKGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGr  SSGKGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJGrGJ Gr GJGrGJGrGJGrGJGrGJGr  SS K	GJGr  SS!GKGJGrGJ	Gr	GJ
Gr
  1 S"kGrS#GrS$GrS%GrS&S'G\GR                  S(5      4S)G\GR                  S*5      4S+G\GR                  S,5      4S-G\GR                  S-5      4/GrG\ V Vs0 s H  u  pU G\GR                  XS.9_M     snn Gr1 S/kGrS0GrSS1GKGJGr  \GR,                  GR/                  5         G\" G\G\" \GR4                  5      -  G\" G\GR4                  5      -  G\" G\\GR6                  GR4                  5      -  G\" G\\GR8                  GR4                  5      -  G\" G\\GR:                  GR4                  5      -  G\" G\\GR<                  GR4                  5      -  G\" G\\GR>                  GR4                  5      -  G\" G\\GR@                  GR4                  5      -  G\" G\\GRB                  GR4                  5      -  G\" G\\GRD                  GR4                  5      -  G\" G\\GRF                  GR4                  5      -  G\" G\\GRH                  GR4                  5      -  G\" G\\GRJ                  GR4                  5      -  G\" G\\GRL                  GR4                  5      -  G\" G\\GRN                  GR4                  5      -  G\" G\\GRP                  GR4                  5      -  1 S2k-  5      Gr\GRR                  " S3S4S59  \GRR                  " S3S6S59  \GRR                  " S3S7S59  S8 Gr*S9 Gr+SS:GK,GJ-Gr-  G\-" G\.5      Gr/GC-S; Gr0G\0" 5         GC0S< Gr1\GRd                  S=:X  a  SS>K	GJ3Gr3  \GRh                  " S?S@9 Gr5G\1" 5         G\6" G\55      S:  aq  G\5 Hh  Gr7G\7GRp                  G\3GRr                  L d  M#  G\7GRp                  GR\                   SAG\7GRt                   3Gr;SBGR                  G\;5      rG\<" \5      e   GC7GC5SSS5        GC1SC Gr=\GR|                  GR                  G\=" 5       5        GC=\GR|                  GR                  GR                  5         \GR                  GR                  SDSE5      SE:w  a  \GR                  " SFG\ESGSH9  SI GrFCCCg! \ a    Sr G
Nf = f! \ a  rSr\" \5      \eSrCff = f! G\[ a     GM  f = fs  snn f ! , (       d  f       N= f)JaG
  
NumPy
=====

Provides
  1. An array object of arbitrary homogeneous items
  2. Fast mathematical operations over arrays
  3. Linear Algebra, Fourier Transforms, Random Number Generation

How to use the documentation
----------------------------
Documentation is available in two forms: docstrings provided
with the code, and a loose standing reference guide, available from
`the NumPy homepage <https://numpy.org>`_.

We recommend exploring the docstrings using
`IPython <https://ipython.org>`_, an advanced Python shell with
TAB-completion and introspection capabilities.  See below for further
instructions.

The docstring examples assume that `numpy` has been imported as ``np``::

  >>> import numpy as np

Code snippets are indicated by three greater-than signs::

  >>> x = 42
  >>> x = x + 1

Use the built-in ``help`` function to view a function's docstring::

  >>> help(np.sort)
  ... # doctest: +SKIP

For some objects, ``np.info(obj)`` may provide additional help.  This is
particularly true if you see the line "Help on ufunc object:" at the top
of the help() page.  Ufuncs are implemented in C, not Python, for speed.
The native Python help() does not know how to view their help, but our
np.info() function does.

Available subpackages
---------------------
lib
    Basic functions used by several sub-packages.
random
    Core Random Tools
linalg
    Core Linear Algebra Tools
fft
    Core FFT routines
polynomial
    Polynomial tools
testing
    NumPy testing tools
distutils
    Enhancements to distutils with support for
    Fortran compilers support and more (for Python <= 3.11)

Utilities
---------
test
    Run numpy unittests
show_config
    Show numpy build configuration
__version__
    NumPy version string

Viewing documentation using IPython
-----------------------------------

Start IPython and import `numpy` usually under the alias ``np``: `import
numpy as np`.  Then, directly past or use the ``%cpaste`` magic to paste
examples into the shell.  To see which functions are available in `numpy`,
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
down the list.  To view the docstring for a function, use
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
the source code).

Copies vs. in-place operation
-----------------------------
Most of the functions in `numpy` return a copy of the array argument
(e.g., `np.sort`).  In-place versions of these functions are often
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
Exceptions to this rule are documented.

    N   )_NoValue	_CopyMode)__expired_attributes__)version)__version__Fz%Running from numpy source directory.
)_distributor_init)show_configzError importing numpy: you should not try to import numpy from
        its source directory; please exit the numpy source tree, and relaunch
        your python interpreter from there.)_core(B  False_
ScalarTypeTrue_absabsoluteacosacoshaddallallcloseamaxaminanyarangearccosarccosharcsinarcsinharctanarctan2arctanhargmaxargminargpartitionargsortargwherearoundarrayarray2stringarray_equalarray_equiv
array_repr	array_str
asanyarrayasarrayascontiguousarrayasfortranarrayasinasinhatanatanhatan2astype
atleast_1d
atleast_2d
atleast_3d	base_reprbinary_reprbitwise_andbitwise_countbitwise_invertbitwise_left_shiftbitwise_not
bitwise_orbitwise_right_shiftbitwise_xorblockboolbool_	broadcastbusday_countbusday_offsetbusdaycalendarbytebytes_can_castcbrtcdoubleceil	characterchooseclipclongdouble
complex128	complex64complexfloatingcompressconcatconcatenateconj	conjugateconvolvecopysigncopyto	correlatecoscoshcount_nonzerocrosscsinglecumprodcumsumcumulative_prodcumulative_sum
datetime64datetime_as_stringdatetime_datadeg2raddegreesdiagonaldividedivmoddotdoubledtypeeeinsumeinsum_pathempty
empty_likeequalerrstateeuler_gammaexpexp2expm1fabsfinfoflatiterflatnonzeroflexiblefloat16float32float64float_powerfloatingfloorfloor_dividefmaxfminfmodformat_float_positionalformat_float_scientificfrexpfrom_dlpack
frombufferfromfilefromfunctionfromiter
frompyfunc
fromstringfull	full_likegcdgeneric	geomspaceget_printoptions
getbufsizegeterr
geterrcallgreatergreater_equalhalf	heavisidehstackhypotidentityiinfoindicesinexactinfinnerint16int32int64int8int_intcintegerintpinvert	is_busdayiscloseisdtypeisfinite	isfortranisinfisnanisnatisscalar
issubdtypelcmldexp
left_shiftless
less_equallexsortlinspacelittle_endianloglog10log1plog2	logaddexp
logaddexp2logical_andlogical_not
logical_orlogical_xorlogspacelong
longdoublelonglongmatmulmatvecmatrix_transposemaxmaximummay_share_memorymeanmemmapminmin_scalar_typeminimummodmodfmoveaxismultiplynanndarrayndimnditernegativenested_itersnewaxis	nextafternonzero	not_equalnumberobject_ones	ones_likeouter	partitionpermute_dimspipositivepowpowerprintoptionsprodpromote_typesptpputputmaskrad2degradiansravelrecarray
reciprocalrecord	remainderrepeatrequirereshaperesizeresult_typeright_shiftrintrollrollaxisround
sctypeDictsearchsortedset_printoptions
setbufsizeseterr
seterrcallshapeshares_memoryshortsignsignbitsignedintegersinsinglesinhsizesortspacingsqrtsquaresqueezestackstdstr_subtractsumswapaxestaketantanh	tensordottimedelta64trace	transposetrue_dividetrunc	typecodesubyteufuncuintuint16uint32uint64uint8uintcuintpulong	ulonglongunsignedintegerunstackushortvarvdotvecdotvecmatvoidvstackwherezeros
zeros_like)float96float128
complex192
complex256)lib)scimath)	histogramhistogram_bin_edgeshistogramdd)	nanargmax	nanargmin
nancumprod	nancumsumnanmaxnanmean	nanmediannanminnanpercentilenanprodnanquantilenanstdnansumnanvar)&select	piecewise
trim_zeroscopyiterable
percentilediffgradientangleunwrapsort_complexfliprot90extractplace	vectorizeasarray_chkfiniteaveragebincountdigitizecovcorrcoefmediansinchamminghanningbartlettblackmankaiser	trapezoidtrapzi0meshgriddeleteinsertappendinterpquantile)diagdiagflateyefliplrflipudtritriutrilvanderhistogram2dmask_indicestril_indicestril_indices_fromtriu_indicestriu_indices_from)apply_over_axesapply_along_axisarray_splitcolumn_stackdsplitdstackexpand_dimshsplitkronput_along_axis	row_stacksplittake_along_axistilevsplit)iscomplexobj	isrealobjimag	iscomplexisreal
nan_to_numrealreal_if_closetypenamemintypecodecommon_type)ediff1din1dintersect1disin	setdiff1dsetxor1dunion1dunique
unique_allunique_countsunique_inverseunique_values)fixisneginfisposinf)pad)show_runtimeget_includeinfo)broadcast_arraysbroadcast_shapesbroadcast_to)polypolyintpolyderpolyaddpolysubpolymulpolydivpolyvalpolyfitpoly1droots)
savetxtloadtxt
genfromtxtloadsavesavezpackbitssavez_compressed
unpackbits	fromregex)diag_indices_fromdiag_indicesfill_diagonalndindexndenumerateix_c_r_s_ogridmgridunravel_indexravel_multi_index	index_exp)	matrixlib)asmatrixbmatmatrix>   mafftrR  reccharcoref2pytestdtypeslinalgrandomtypingstringstesting	ctypeslib
exceptions
polynomiala  module 'numpy' has no attribute '{n}'.
`np.{n}` was a deprecated alias for the builtin `{n}`. To avoid this error in existing code, use `{n}` by itself. Doing this will not modify any behavior and is safe. {extended_msg}
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
    https://numpy.org/devdocs/release/1.20.0-notes.html#deprecationszCIf you specifically wanted the numpy scalar type, use `np.{}` here.zWhen replacing `np.{}`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.)object floatr   complexrU   strr)  intnextended_msg>   r  bytesr  z2023.12)__array_namespace_info__>   emathr   r
   r  ignoreznumpy.dtype size changed)messageznumpy.ufunc size changedznumpy.ndarray size changedc                    SS K nU S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS K	J
n  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S	:X  a  SS KJn	  U	$ U S
:X  a  SS KJn
  U
$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a  SS KJn  U$ U S:X  a
  [;        SS S9eU S:X  a  SS KJn  U$ U S:X  a  SS K J!n  U$ U S:X  a  S[D        ;   a  SS K#J$n  U$ [;        SS S9eU [J        ;   a  URL                  " SU  S3[N        SS9  U [P        ;   a  [;        [P        U    S S9eU [R        ;   a  [;        SU  S[R        U     3S S9eU S:X  a(  URL                  " S[T        SS9  SS KJn  URV                  $ [;        SRY                  [Z        U 5      5      e) Nr   r  r  r  r  r   r  r  r  r  matlibr  r  r  r  	array_apiz9`numpy.array_api` is not available from numpy 2.0 onwards)namer  r  	distutilsz;`numpy.distutils` is not available from Python 3.12 onwardszIn the future `np.z4` will be defined as the corresponding NumPy scalar.   
stacklevelz`np.z(` was removed in the NumPy 2.0 release. 	chararrayz`np.chararray` is deprecated and will be removed from the main namespace in the future. Use an array with a string or bytes dtype instead.z!module {!r} has no attribute {!r}).warningsnumpy.linalgr  	numpy.fftr  numpy.dtypesr  numpy.randomr  numpy.polynomialr   numpy.mar  numpy.ctypeslibr  numpy.exceptionsr  numpy.testingr  numpy.matlibr  
numpy.f2pyr  numpy.typingr  	numpy.recr  
numpy.charr  AttributeError
numpy.corer  numpy.stringsr  __numpy_submodules__numpy.distutilsr  __future_scalars__warnFutureWarning__former_attrs__r   DeprecationWarningr  format__name__)attrr  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  s                      @/var/www/html/env/lib/python3.13/site-packages/numpy/__init__.py__getattr__r5  F  s!   8)MU]#JX)MX)M\!1T\!I[ /\!1Y+NX)MV^%KX)MU]#JV^%K[   "5;?A AV^%KY+N[ 223  $ &;AEG G %% MM$TF +. ./<L ## !1$!7dCC)) tfD)$/02  ;MM*+=!M &>>! $$*F8T$:< 	<    c                  d    [        5       R                  5       [        -  n U 1 Sk-  n [        U 5      $ )N>   testscompatr  r   conftestr  r  r  )globalskeysr*  list)public_symbolss    r4  __dir__r?    s7    INN33 	 	 
 	
 N##r6  )PytestTesterc                       [        S[        S9n [        U R                  U 5      [        S5      -
  5      S:  d  [        eg! [         a"    Sn[        UR                  [        5      5      Sef = f)aV  
Quick sanity checks for common bugs caused by environment.
There are some cases e.g. with wrong BLAS ABI that cause wrong
results under specific runtime conditions that are not necessarily
achieved during test suite runs, and it is useful to catch those early.

See https://github.com/numpy/numpy/issues/8577 and other
similar bug reports.

r  )rt          @gh㈵>zThe current Numpy installation ({!r}) fails to pass simple sanity checks. This can be caused for example by incorrect BLAS library being linked in, or by mixing package managers (pip, conda, apt, ...). Search closed numpy issues for similar problems.N)r   r   r   rr   AssertionErrorRuntimeErrorr1  __file__)xmsgs     r4  _sanity_checkrH    sj    
	?Qg&AquuQx'#,./$6$$ 7 	?8C
 szz(34$>	?s   >A ,A-c                       [        / SQ5      n [        SSS5      n[        X5      n[        XSSS9ng! [         a     gf = f)zo
Quick Sanity check for Mac OS look for accelerate build bugs.
Testing numpy polyfit calls init_dgelsd(LAPACK)
)g      @rB  g      ?r   r     T)ry  N)r'   r   r  r  
ValueError)crF  y_s       r4  _mac_os_checkrO    sH    
	l#AAq!AAaT*A 		s   03 
A A darwin)r  T)r  z: a  Polyfit sanity test emitted a warning, most likely due to using a buggy Accelerate backend.
If you compiled yourself, more information is available at:
https://numpy.org/devdocs/building/index.html
Otherwise report this to the vendor that provided NumPy.

{}
c                  ^   [         R                  R                  SS5      n [        R                  S:X  aS  U cP   Sn [         R
                  " 5       R                  R                  S5      SS n[        S U 5       5      nUS:  a  S	n U $ U c  Sn U $ [        U 5      n U $ ! [         a    S	n  U $ f = f)
a  
We usually use madvise hugepages support, but on some old kernels it
is slow and thus better avoided. Specifically kernel version 4.6
had a bug fix which probably fixed this:
https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
NUMPY_MADVISE_HUGEPAGENlinuxr   .r  c              3   8   #    U  H  n[        U5      v   M     g 7f)N)r  ).0vs     r4  	<genexpr>!hugepage_setup.<locals>.<genexpr>   s     &F~!s1vv~s   )      r   )osenvirongetsysplatformunamereleaser  tuplerK  r  )use_hugepagekernel_versions     r4  hugepage_setuprf    s     zz~~&>E<<7"|';! !#!3!3!9!9#!>r!B!&&F~&F!F!F*#$L  !L  |,L  !  !s   AB B,+B,NPY_PROMOTION_STATEweakzdNPY_PROMOTION_STATE was a temporary feature for NumPy 2.0 transition and is ignored after NumPy 2.2.r  r  c                  t    SSK Jn   [        U " [        5      R	                  S5      R                  5       5      /$ )Nr   Path_pyinstaller)pathlibrk  r  rE  	with_nameresolverj  s    r4  _pyinstaller_hooks_dirrp    s+     DN,,^<DDFGHHr6  (G  __doc__r\  r_  r  _globalsr   r   _expired_attrs_2_0r   r  r   r   __NUMPY_SETUP__	NameErrorstderrwriter	   numpy.__config__r
   ImportErrorru   rG  r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   rv   rw   rx   ry   rz   r{   r|   r}   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  tagetattrr;  r'  rR  rS  r  lib._histograms_implrT  rU  rV  lib._nanfunctions_implrW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  lib._function_base_implre  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  lib._twodim_base_implr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  lib._shape_base_implr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  lib._type_check_implr  r  r  r  r  r  r  r  r  r  r  lib._arraysetops_implr  r  r  r  r  r  r  r  r  r  r  r  lib._ufunclike_implr  r  r  lib._arraypad_implr  lib._utils_implr  r  r  lib._stride_tricks_implr  r  r  lib._polynomial_implr  r  r  r  r  r  r  r  r  r  r  lib._npyio_implr  r  r  r  r  r  r  r  r  r  lib._index_tricks_implr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  _matr  r  r  r*  _msg_specific_msg_int_extended_msgr1  
_type_infor/  r,  __array_api_version___array_api_infor  	getlimits_register_known_typesr=  set__all___histograms_impl_nanfunctions_impl_function_base_impl_twodim_base_impl_shape_base_impl_type_check_impl_arraysetops_impl_ufunclike_impl_arraypad_impl_utils_impl_stride_tricks_impl_polynomial_impl_npyio_impl_index_tricks_implfilterwarningsr5  r?  numpy._pytesttesterr@  r2  r  rH  rO  r`  r  catch_warningswlen_wncategoryRankWarningr  error_messagerD  rf  
multiarray_set_madvise_hugepage_multiarray_umath_reload_guardr]  r^  r-  UserWarningrp  r  s   00r4  <module>r     s  Vn 
 
  ) 6    JJ=> $&0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0h B	#E2.GIbM B
 	%%         
                           
        
             =<<''                       $  	O 	 	N 	"  		-&&y12	M((67	$$V,-	!((/02J !+ *_Q 
DKK!K7	7 * 4%99 
OO))+EMM	DLL	 	C  (()	* 	C""**+		,
 	C##++,	- 	C!!))*	+ 	C  (()	* 	C  (()	* 	C!!))*		+ 	C''(
	) 	C&&'	( 	COO##$	% 	C##++,	- 	C  (()	* 	COO##$	%  	C""**+!	," 	L#	LG, H.HIH.HIH.JKY<v$ 10!D?. O ||x $$D1QO1vzC||z'='==  #||445R}E &;
 <B6-;P  +3//  ' 2( 	< 
**>+;<
 
&&446 	

,f5?9A	'I Xw  O  &/ #A%	&|  		NB 21sT   l l "l-9l<":m Amlll*l%%l*-l98l9
m