
    hb                         S r SSKrSSKJr  SS/r\" S5      \" S5      \R                  " SS	9SS
 j5       5       5       r\" S5      \" S5      \R                  " SS	9SS j5       5       5       rg)zModularity matrix of graphs.    N)not_implemented_formodularity_matrixdirected_modularity_matrixdirected
multigraphweight)
edge_attrsc                     SSK nUc  [        U 5      n[        R                  " XUSS9nUR	                  SS9nUR	                  5       S-  nUR                  XU5      SU-  -  nXG-
  $ )	a5  Returns the modularity matrix of G.

The modularity matrix is the matrix B = A - <A>, where A is the adjacency
matrix and <A> is the average adjacency matrix, assuming that the graph
is described by the configuration model.

More specifically, the element B_ij of B is defined as

.. math::
    A_{ij} - {k_i k_j \over 2 m}

where k_i is the degree of node i, and where m is the number of edges
in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
k_j and m are computed using its value.

Parameters
----------
G : Graph
   A NetworkX graph

nodelist : list, optional
   The rows and columns are ordered according to the nodes in nodelist.
   If nodelist is None, then the ordering is produced by G.nodes().

weight : string or None, optional (default=None)
   The edge attribute that holds the numerical value used for
   the edge weight.  If None then all edge weights are 1.

Returns
-------
B : Numpy array
  The modularity matrix of G.

Examples
--------
>>> k = [3, 2, 2, 1, 0]
>>> G = nx.havel_hakimi_graph(k)
>>> B = nx.modularity_matrix(G)


See Also
--------
to_numpy_array
modularity_spectrum
adjacency_matrix
directed_modularity_matrix

References
----------
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
r   Ncsrnodelistr   format   axisg      ?   numpylistnxto_scipy_sparse_arraysumouter)Gr   r   npAkmXs           R/var/www/html/env/lib/python3.13/site-packages/networkx/linalg/modularitymatrix.pyr   r   	   sf    p 7
  fUSA	1A	#A
!a% A5L    
undirectedc                     SSK nUc  [        U 5      n[        R                  " XUSS9nUR	                  SS9nUR	                  SS9nUR	                  5       nUR                  Xe5      U-  nXH-
  $ )a<  Returns the directed modularity matrix of G.

The modularity matrix is the matrix B = A - <A>, where A is the adjacency
matrix and <A> is the expected adjacency matrix, assuming that the graph
is described by the configuration model.

More specifically, the element B_ij of B is defined as

.. math::
    B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m

where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
of node j, with m the number of edges in the graph. When weight is set
to a name of an attribute edge, Aij, k_i, k_j and m are computed using
its value.

Parameters
----------
G : DiGraph
   A NetworkX DiGraph

nodelist : list, optional
   The rows and columns are ordered according to the nodes in nodelist.
   If nodelist is None, then the ordering is produced by G.nodes().

weight : string or None, optional (default=None)
   The edge attribute that holds the numerical value used for
   the edge weight.  If None then all edge weights are 1.

Returns
-------
B : Numpy array
  The modularity matrix of G.

Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edges_from(
...     (
...         (1, 2),
...         (1, 3),
...         (3, 1),
...         (3, 2),
...         (3, 5),
...         (4, 5),
...         (4, 6),
...         (5, 4),
...         (5, 6),
...         (6, 4),
...     )
... )
>>> B = nx.directed_modularity_matrix(G)


Notes
-----
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
is a link going from node i to node j. Leicht and Newman use the opposite
definition. This explains the different expression for B_ij.

See Also
--------
to_numpy_array
modularity_spectrum
adjacency_matrix
modularity_matrix

References
----------
.. [1] E. A. Leicht, M. E. J. Newman,
    "Community structure in directed networks",
    Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
r   Nr   r   r   r   r   )	r   r   r   r   r   k_ink_outr   r   s	            r    r   r   N   sn    Z 7
  fUSA55a5=DEEqEME
A
!A5Lr!   )NN)	__doc__networkxr   networkx.utilsr   __all___dispatchabler   r    r!   r    <module>r,      s    "  . <
= Z \"X&? ' # !?D \"\"X&U ' # #Ur!   