
    h                         S r SSKJr  SSKJr  SSKrSSKJr  SSKJ	r	  SSK
Jr  SSKJr  SS	KJrJrJrJrJr  SS
KJr  S/r " S S\\5      rg)zBase class for MultiDiGraph.    deepcopy)cached_propertyN)convert)MultiAdjacencyView)DiGraph)
MultiGraph)DiMultiDegreeViewInMultiDegreeViewInMultiEdgeViewOutMultiDegreeViewOutMultiEdgeView)NetworkXErrorMultiDiGraphc                      \ rS rSrSr\rSS jr\S 5       r	\S 5       r
\S 5       rSS jrSS	 jr\S
 5       r\S 5       r\R                  \l        \S 5       r\S 5       r\S 5       r\S 5       rS rS rSS jrSS jrSrg)r      aw&  A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes.  Each edge
can hold optional data or attributes.

A MultiDiGraph holds directed edges.  Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes. By convention `None` is not used as a node.

Edges are represented as links between nodes with optional
key/value attributes.

Parameters
----------
incoming_graph_data : input graph (optional, default: None)
    Data to initialize graph. If None (default) an empty
    graph is created.  The data can be any format that is supported
    by the to_networkx_graph() function, currently including edge list,
    dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
    sparse matrix, or PyGraphviz graph.

multigraph_input : bool or None (default None)
    Note: Only used when `incoming_graph_data` is a dict.
    If True, `incoming_graph_data` is assumed to be a
    dict-of-dict-of-dict-of-dict structure keyed by
    node to neighbor to edge keys to edge data for multi-edges.
    A NetworkXError is raised if this is not the case.
    If False, :func:`to_networkx_graph` is used to try to determine
    the dict's graph data structure as either a dict-of-dict-of-dict
    keyed by node to neighbor to edge data, or a dict-of-iterable
    keyed by node to neighbors.
    If None, the treatment for True is tried, but if it fails,
    the treatment for False is tried.

attr : keyword arguments, optional (default= no attributes)
    Attributes to add to graph as key=value pairs.

See Also
--------
Graph
DiGraph
MultiGraph

Examples
--------
Create an empty graph structure (a "null graph") with no nodes and
no edges.

>>> G = nx.MultiDiGraph()

G can be grown in several ways.

**Nodes:**

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))
>>> H = nx.path_graph(10)
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

**Edges:**

G can also be grown by adding edges.

Add one edge,

>>> key = G.add_edge(1, 2)

a list of edges,

>>> keys = G.add_edges_from([(1, 2), (1, 3)])

or a collection of edges,

>>> keys = G.add_edges_from(H.edges)

If some edges connect nodes not yet in the graph, the nodes
are added automatically.  If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.

>>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
>>> G[4]
AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})

**Attributes:**

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.nodes

>>> G.add_node(1, time="5pm")
>>> G.add_nodes_from([3], time="2pm")
>>> G.nodes[1]
{'time': '5pm'}
>>> G.nodes[1]["room"] = 714
>>> del G.nodes[1]["room"]  # remove attribute
>>> list(G.nodes(data=True))
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edges.

>>> key = G.add_edge(1, 2, weight=4.7)
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
>>> G[1][2][0]["weight"] = 4.7
>>> G.edges[1, 2, 0]["weight"] = 4

Warning: we protect the graph data structure by making `G.edges[1,
2, 0]` a read-only dict-like structure. However, you can assign to
attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
(for multigraphs the edge key is required: `MG.edges[u, v,
key][name] = value`).

**Shortcuts:**

Many common graph features allow python syntax to speed reporting.

>>> 1 in G  # check if node in graph
True
>>> [n for n in G if n < 3]  # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5
>>> G[1]  # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})

Often the best way to traverse all edges of a graph is via the neighbors.
The neighbors are available as an adjacency-view `G.adj` object or via
the method `G.adjacency()`.

>>> for n, nbrsdict in G.adjacency():
...     for nbr, keydict in nbrsdict.items():
...         for key, eattr in keydict.items():
...             if "weight" in eattr:
...                 # Do something useful with the edges
...                 pass

But the edges() method is often more convenient:

>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
...     if weight is not None:
...         # Do something useful with the edges
...         pass

**Reporting:**

Simple graph information is obtained using methods and object-attributes.
Reporting usually provides views instead of containers to reduce memory
usage. The views update as the graph is updated similarly to dict-views.
The objects `nodes`, `edges` and `adj` provide access to data attributes
via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
(e.g. `nodes.items()`, `nodes.data('color')`,
`nodes.data('color', default='blue')` and similarly for `edges`)
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.

For details on these and other miscellaneous methods, see below.

**Subclasses (Advanced):**

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
The outer dict (node_dict) holds adjacency information keyed by node.
The next dict (adjlist_dict) represents the adjacency information
and holds edge_key dicts keyed by neighbor. The edge_key dict holds
each edge_attr dict keyed by edge key. The inner dict
(edge_attr_dict) represents the edge data and holds edge attribute
values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names are
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
and graph_attr_dict_factory.

node_dict_factory : function, (default: dict)
    Factory function to be used to create the dict containing node
    attributes, keyed by node id.
    It should require no arguments and return a dict-like object

node_attr_dict_factory: function, (default: dict)
    Factory function to be used to create the node attribute
    dict which holds attribute values keyed by attribute name.
    It should require no arguments and return a dict-like object

adjlist_outer_dict_factory : function, (default: dict)
    Factory function to be used to create the outer-most dict
    in the data structure that holds adjacency info keyed by node.
    It should require no arguments and return a dict-like object.

adjlist_inner_dict_factory : function, (default: dict)
    Factory function to be used to create the adjacency list
    dict which holds multiedge key dicts keyed by neighbor.
    It should require no arguments and return a dict-like object.

edge_key_dict_factory : function, (default: dict)
    Factory function to be used to create the edge key dict
    which holds edge data keyed by edge key.
    It should require no arguments and return a dict-like object.

edge_attr_dict_factory : function, (default: dict)
    Factory function to be used to create the edge attribute
    dict which holds attribute values keyed by attribute name.
    It should require no arguments and return a dict-like object.

graph_attr_dict_factory : function, (default: dict)
    Factory function to be used to create the graph attribute
    dict which holds attribute values keyed by attribute name.
    It should require no arguments and return a dict-like object.

Typically, if your extension doesn't impact the data structure all
methods will inherited without issue except: `to_directed/to_undirected`.
By default these methods create a DiGraph/Graph class and you probably
want them to create your extension of a DiGraph/Graph. To facilitate
this we define two class variables that you can set in your subclass.

to_directed_class : callable, (default: DiGraph or MultiDiGraph)
    Class to create a new graph structure in the `to_directed` method.
    If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.

to_undirected_class : callable, (default: Graph or MultiGraph)
    Class to create a new graph structure in the `to_undirected` method.
    If `None`, a NetworkX class (Graph or MultiGraph) is used.

**Subclassing Example**

Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
...     all_edge_dict = {"weight": 1}
...
...     def single_edge_dict(self):
...         return self.all_edge_dict
...
...     edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2, 1)
>>> G[2][1]
{'weight': 1}
>>> G.add_edge(2, 2)
>>> G[2][1] is G[2][2]
True
Nc                    [        U[        5      (       aM  USLaH  [        R                  " U 5         [        R
                  " XSS9  U R                  R                  U5        g[        R                  " X40 UD6  g! [         aK  nUSL a%  [        R                  " S[        U5       SU 35      e[        R                  " X40 UD6   SnAgSnAff = f)a  Initialize a graph with edges, name, or graph attributes.

Parameters
----------
incoming_graph_data : input graph
    Data to initialize graph.  If incoming_graph_data=None (default)
    an empty graph is created.  The data can be an edge list, or any
    NetworkX graph object.  If the corresponding optional Python
    packages are installed the data can also be a 2D NumPy array, a
    SciPy sparse array, or a PyGraphviz graph.

multigraph_input : bool or None (default None)
    Note: Only used when `incoming_graph_data` is a dict.
    If True, `incoming_graph_data` is assumed to be a
    dict-of-dict-of-dict-of-dict structure keyed by
    node to neighbor to edge keys to edge data for multi-edges.
    A NetworkXError is raised if this is not the case.
    If False, :func:`to_networkx_graph` is used to try to determine
    the dict's graph data structure as either a dict-of-dict-of-dict
    keyed by node to neighbor to edge data, or a dict-of-iterable
    keyed by node to neighbors.
    If None, the treatment for True is tried, but if it fails,
    the treatment for False is tried.

attr : keyword arguments, optional (default= no attributes)
    Attributes to add to graph as key=value pairs.

See Also
--------
convert

Examples
--------
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)]  # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

FT)create_usingmultigraph_inputz$converting multigraph_input raised:
z: N)
isinstancedictr   __init__r   from_dict_of_dictsgraphupdate	Exceptionnxr   type)selfincoming_graph_datar   attrerrs        O/var/www/html/env/lib/python3.13/site-packages/networkx/classes/multidigraph.pyr   MultiDiGraph.__init__.  s    ^ )4005EU5RT"
D**'T 

!!$' T?$?  D#t+**?S	{"SER    CdCDs   0A; ;
CACCc                 ,    [        U R                  5      $ )a]  Graph adjacency object holding the neighbors of each node.

This object is a read-only dict-like structure with node keys
and neighbor-dict values.  The neighbor-dict is keyed by neighbor
to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.

Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.

The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.

For directed graphs, `G.adj` holds outgoing (successor) info.
r   _succr   s    r#   adjMultiDiGraph.adjm      " "$**--    c                 ,    [        U R                  5      $ )aW  Graph adjacency object holding the successors of each node.

This object is a read-only dict-like structure with node keys
and neighbor-dict values.  The neighbor-dict is keyed by neighbor
to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.

Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.

The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.

For directed graphs, `G.succ` is identical to `G.adj`.
r&   r(   s    r#   succMultiDiGraph.succ  r+   r,   c                 ,    [        U R                  5      $ )a  Graph adjacency object holding the predecessors of each node.

This object is a read-only dict-like structure with node keys
and neighbor-dict values.  The neighbor-dict is keyed by neighbor
to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.

Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
)r   _predr(   s    r#   predMultiDiGraph.pred  s     "$**--r,   c                    XpeXPR                   ;  ae  Uc  [        S5      eU R                  5       U R                   U'   U R                  5       U R                  U'   U R	                  5       U R
                  U'   X`R                   ;  ae  Uc  [        S5      eU R                  5       U R                   U'   U R                  5       U R                  U'   U R	                  5       U R
                  U'   Uc  U R                  XV5      nX`R                   U   ;   aG  U R                  U   U   nUR                  X0R                  5       5      nUR                  U5        XU'   OWU R                  5       nUR                  U5        U R                  5       nXU'   XpR                   U   U'   XpR                  U   U'   [        R                  " U 5        U$ )a  Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by directly
accessing the edge's attribute dictionary. See examples below.

Parameters
----------
u_for_edge, v_for_edge : nodes
    Nodes can be, for example, strings or numbers.
    Nodes must be hashable (and not None) Python objects.
key : hashable identifier, optional (default=lowest unused integer)
    Used to distinguish multiedges between a pair of nodes.
attr : keyword arguments, optional
    Edge data (or labels or objects) can be assigned using
    keyword arguments.

Returns
-------
The edge key assigned to the edge.

See Also
--------
add_edges_from : add a collection of edges

Notes
-----
To replace/update edge data, use the optional key argument
to identify a unique edge.  Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights.  Convert to Graph using edge attribute
'weight' to enable weighted graph algorithms.

Default keys are generated using the method `new_edge_key()`.
This method can be overridden by subclassing the base class and
providing a custom `new_edge_key()` method.

Examples
--------
The following all add the edge e=(1, 2) to graph G:

>>> G = nx.MultiDiGraph()
>>> e = (1, 2)
>>> key = G.add_edge(1, 2)  # explicit two-node form
>>> G.add_edge(*e)  # single edge as tuple of two nodes
1
>>> G.add_edges_from([(1, 2)])  # add edges from iterable container
[2]

Associate data to edges using keywords:

>>> key = G.add_edge(1, 2, weight=3)
>>> key = G.add_edge(1, 2, key=0, weight=4)  # update data for key=0
>>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

For non-string attribute keys, use subscript notation.

>>> ekey = G.add_edge(1, 2)
>>> G[1][2][0].update({0: 5})
>>> G.edges[1, 2, 0].update({0: 5})
zNone cannot be a node)r'   
ValueErroradjlist_inner_dict_factoryr1   node_attr_dict_factory_nodenew_edge_key_adjgetedge_attr_dict_factoryr   edge_key_dict_factoryr   _clear_cache)	r   
u_for_edge
v_for_edgekeyr!   uvkeydictdatadicts	            r#   add_edgeMultiDiGraph.add_edge  s   D 1JJy !899 ;;=DJJqM ;;=DJJqM 779DJJqMJJy !899 ;;=DJJqM ;;=DJJqM 779DJJqM;##A)C

1iil1oG{{3(C(C(EFHOOD!#CL 224HOOD!002G#CL&JJqM!&JJqM!

r,   c                     U R                   U   U   nUc  UR                  5         O XC	 [	        U5      S:X  a   U R
                  U   U	 U R                  U   U	 [        R                  " U 5        g! [         a  n[        SU SU S35      UeSnAff = f! [         a  nSU SU SU S3n[        U5      UeSnAff = f)a  Remove an edge between u and v.

Parameters
----------
u, v : nodes
    Remove an edge between nodes u and v.
key : hashable identifier, optional (default=None)
    Used to distinguish multiple edges between a pair of nodes.
    If None, remove a single edge between u and v. If there are
    multiple edges, removes the last edge added in terms of
    insertion order.

Raises
------
NetworkXError
    If there is not an edge between u and v, or
    if there is no edge with the specified key.

See Also
--------
remove_edges_from : remove a collection of edges

Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.remove_edge(0, 1)
>>> e = (1, 2)
>>> G.remove_edge(*e)  # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1, 2), (1, 2), (1, 2)])  # key_list returned
[0, 1, 2]

When ``key=None`` (the default), edges are removed in the opposite
order that they were added:

>>> G.remove_edge(1, 2)
>>> G.edges(keys=True)
OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])

For edges with keys

>>> G = nx.MultiDiGraph()
>>> G.add_edge(1, 2, key="first")
'first'
>>> G.add_edge(1, 2, key="second")
'second'
>>> G.remove_edge(1, 2, key="first")
>>> G.edges(keys=True)
OutMultiEdgeView([(1, 2, 'second')])

z	The edge -z is not in the graph.Nz
 with key r   )	r:   KeyErrorr   popitemlenr'   r1   r   r>   )r   rB   rC   rA   dr"   msgs          r#   remove_edgeMultiDiGraph.remove_edge  s    p	S		!QA ;IIK2F q6Q;

1a 

1a 
  	S)A3as2G HIsR	S  2!!AaS
3%7LM#C(c12s.   A1 B 1
B;BB
B= B88B=c                     [        U 5      $ )a  An OutMultiEdgeView of the Graph as G.edges or G.edges().

edges(self, nbunch=None, data=False, keys=False, default=None)

The OutMultiEdgeView provides set-like operations on the edge-tuples
as well as edge attribute lookup. When called, it also provides
an EdgeDataView object which allows control of access to edge
attributes (but does not provide set-like operations).
Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
attribute for the edge from ``u`` to ``v`` with key ``k`` while
``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
iterates through all the edges yielding the color attribute with
default `'red'` if no color attribute exists.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data). If ``keys=True`` is not
provided, the tuples will just be (node, neighbor, data), but
multiple tuples with the same node and neighbor will be
generated when multiple edges between two nodes exist.

Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
    The view will only report edges from these nodes.
data : string or bool, optional (default=False)
    The edge attribute returned in 3-tuple (u, v, ddict[data]).
    If True, return edge attribute dict in 3-tuple (u, v, ddict).
    If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
    If True, return edge keys with each edge, creating (u, v, k,
    d) tuples when data is also requested (the default) and (u,
    v, k) tuples when data is not requested.
default : value, optional (default=None)
    Value used for edges that don't have the requested attribute.
    Only relevant if data is not True or False.

Returns
-------
edges : OutMultiEdgeView
    A view of edge attributes, usually it iterates over (u, v)
    (u, v, k) or (u, v, k, d) tuples of edges, but can also be
    used for attribute lookup as ``edges[u, v, k]['foo']``.

Notes
-----
Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> key2 = G.add_edge(1, 2)  # second edge between these nodes
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (1, 2), (2, 3)]
>>> list(G.edges(data=True))  # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges(data="weight", default=1))
[(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True))  # default keys are integers
[(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))
[(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data="weight", default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
>>> list(G.edges([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges(0))
[(0, 1)]
>>> list(G.edges(1))
[(1, 2), (1, 2)]

See Also
--------
in_edges, out_edges
r   r(   s    r#   edgesMultiDiGraph.edgesN  s    ^  %%r,   c                     [        U 5      $ NrR   r(   s    r#   	out_edgesMultiDiGraph.out_edges  s    %%r,   c                     [        U 5      $ )a?  A view of the in edges of the graph as G.in_edges or G.in_edges().

in_edges(self, nbunch=None, data=False, keys=False, default=None)

Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
    The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
    The edge attribute returned in 3-tuple (u, v, ddict[data]).
    If True, return edge attribute dict in 3-tuple (u, v, ddict).
    If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
    If True, return edge keys with each edge, creating 3-tuples
    (u, v, k) or with data, 4-tuples (u, v, k, d).
default : value, optional (default=None)
    Value used for edges that don't have the requested attribute.
    Only relevant if data is not True or False.

Returns
-------
in_edges : InMultiEdgeView or InMultiEdgeDataView
    A view of edge attributes, usually it iterates over (u, v)
    or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
    used for attribute lookup as `edges[u, v, k]['foo']`.

See Also
--------
edges
)r   r(   s    r#   in_edgesMultiDiGraph.in_edges  s    @ t$$r,   c                     [        U 5      $ )a  A DegreeView for the Graph as G.degree or G.degree().

The node degree is the number of edges adjacent to the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.

This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.

Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
    The view will only report edges incident to these nodes.

weight : string or None, optional (default=None)
   The name of an edge attribute that holds the numerical value used
   as a weight.  If None, then each edge has weight 1.
   The degree is the sum of the edge weights adjacent to the node.

Returns
-------
DiMultiDegreeView or int
    If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
    mapping nodes to their degree.
    If a single node is requested, returns the degree of the node as an integer.

See Also
--------
out_degree, in_degree

Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.degree(0)  # node 0 with degree 1
1
>>> list(G.degree([0, 1, 2]))
[(0, 1), (1, 2), (2, 2)]
>>> G.add_edge(0, 1)  # parallel edge
1
>>> list(G.degree([0, 1, 2]))  # parallel edges are counted
[(0, 2), (1, 3), (2, 2)]

)r
   r(   s    r#   degreeMultiDiGraph.degree  s    \ !&&r,   c                     [        U 5      $ )a  A DegreeView for (node, in_degree) or in_degree for single node.

The node in-degree is the number of edges pointing into the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.

This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.

Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
    The view will only report edges incident to these nodes.

weight : string or None, optional (default=None)
   The edge attribute that holds the numerical value used
   as a weight.  If None, then each edge has weight 1.
   The degree is the sum of the edge weights adjacent to the node.

Returns
-------
If a single node is requested
deg : int
    Degree of the node

OR if multiple nodes are requested
nd_iter : iterator
    The iterator returns two-tuples of (node, in-degree).

See Also
--------
degree, out_degree

Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.in_degree(0)  # node 0 with degree 0
0
>>> list(G.in_degree([0, 1, 2]))
[(0, 0), (1, 1), (2, 1)]
>>> G.add_edge(0, 1)  # parallel edge
1
>>> list(G.in_degree([0, 1, 2]))  # parallel edges counted
[(0, 0), (1, 2), (2, 1)]

)r   r(   s    r#   	in_degreeMultiDiGraph.in_degree  s    b !&&r,   c                     [        U 5      $ )a  Returns an iterator for (node, out-degree) or out-degree for single node.

out_degree(self, nbunch=None, weight=None)

The node out-degree is the number of edges pointing out of the node.
This function returns the out-degree for a single node or an iterator
for a bunch of nodes or if nothing is passed as argument.

Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
    The view will only report edges incident to these nodes.

weight : string or None, optional (default=None)
   The edge attribute that holds the numerical value used
   as a weight.  If None, then each edge has weight 1.
   The degree is the sum of the edge weights.

Returns
-------
If a single node is requested
deg : int
    Degree of the node

OR if multiple nodes are requested
nd_iter : iterator
    The iterator returns two-tuples of (node, out-degree).

See Also
--------
degree, in_degree

Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.out_degree(0)  # node 0 with degree 1
1
>>> list(G.out_degree([0, 1, 2]))
[(0, 1), (1, 1), (2, 1)]
>>> G.add_edge(0, 1)  # parallel edge
1
>>> list(G.out_degree([0, 1, 2]))  # counts parallel edges
[(0, 2), (1, 1), (2, 1)]

)r   r(   s    r#   
out_degreeMultiDiGraph.out_degree+  s    ` "$''r,   c                     g)z7Returns True if graph is a multigraph, False otherwise.T r(   s    r#   is_multigraphMultiDiGraph.is_multigraph]      r,   c                     g)z3Returns True if graph is directed, False otherwise.Trf   r(   s    r#   is_directedMultiDiGraph.is_directeda  ri   r,   c                   ^  T R                  5       nUSL a   [        R                  R                  T U5      $ U" 5       nUR                  R                  [        T R                  5      5        UR                  S T R                  R                  5        5       5        USL a5  UR                  U 4S jT R                  R                  5        5       5        U$ UR                  S T R                  R                  5        5       5        U$ )a  Returns an undirected representation of the digraph.

Parameters
----------
reciprocal : bool (optional)
  If True only keep edges that appear in both directions
  in the original digraph.
as_view : bool (optional, default=False)
  If True return an undirected view of the original directed graph.

Returns
-------
G : MultiGraph
    An undirected graph with the same name and nodes and
    with edge (u, v, data) if either (u, v, data) or (v, u, data)
    is in the digraph.  If both edges exist in digraph and
    their edge data is different, only one edge is created
    with an arbitrary choice of which edge data to use.
    You must check and correct for this manually if desired.

See Also
--------
MultiGraph, copy, add_edge, add_edges_from

Notes
-----
This returns a "deepcopy" of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=MultiDiGraph(G) which
returns a shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.

Warning: If you have subclassed MultiDiGraph to use dict-like
objects in the data structure, those changes do not transfer
to the MultiGraph created by this method.

Examples
--------
>>> G = nx.path_graph(2)  # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
Tc              3   @   #    U  H  u  pU[        U5      4v   M     g 7frV   r   .0nrM   s      r#   	<genexpr>-MultiDiGraph.to_undirected.<locals>.<genexpr>  s     I6Hda!Xa[)6H   c           	   3     >#    U  Hv  u  pUR                  5         H\  u  p4UR                  5         HB  u  pVUTR                  U   ;   d  M  UTR                  U   U   ;   d  M2  XU[        U5      4v   MD     M^     Mx     g 7frV   )itemsr1   r   )rp   rB   nbrsrC   rD   rA   datar   s          r#   rr   rs     s      0GA"&**,JA!(IC

1%	 , +.Aq1A*A	 ,sHTN+ "1 ,". ,0s   ABB$Bc           	   3      #    U  HI  u  pUR                  5         H/  u  p4UR                  5         H  u  pVXU[        U5      4v   M     M1     MK     g 7frV   )rv   r   )rp   rB   rw   rC   rD   rA   rx   s          r#   rr   rs     sP      0GA"&**,JA!(IC sHTN+ "1 ,". ,0s   AA)to_undirected_classr   
graphviewsgeneric_graph_viewr   r   r   add_nodes_fromr8   rv   add_edges_fromr:   )r   
reciprocalas_viewgraph_classGs   `    r#   to_undirectedMultiDiGraph.to_undirectede  s    f ..0d?==33D+FFM	x

+,	Idjj6F6F6HII #yy0    #yy0  r,   c                 h   U(       a  U R                  5       nUR                  R                  [        U R                  5      5        UR	                  S U R
                  R                  5        5       5        UR                  S U R                  SSS9 5       5        U$ [        R                  " U 5      $ )aS  Returns the reverse of the graph.

The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.

Parameters
----------
copy : bool optional (default=True)
    If True, return a new DiGraph holding the reversed edges.
    If False, the reverse graph is created using a view of
    the original graph.
c              3   @   #    U  H  u  pU[        U5      4v   M     g 7frV   r   ro   s      r#   rr   'MultiDiGraph.reverse.<locals>.<genexpr>  s     M:L$!a!-:Lrt   c              3   D   #    U  H  u  pp4X!U[        U5      4v   M     g 7frV   r   )rp   rB   rC   krM   s        r#   rr   r     s&      "BJA! q(1+&"Bs    T)keysrx   )	__class__r   r   r   r}   r8   rv   r~   rS   r   reverse_view)r   copyHs      r#   reverseMultiDiGraph.reverse  s      AGGNN8DJJ/0M$**:J:J:LMM "&**$T*"B  Ht$$r,   rf   )NNrV   )FF)T)__name__
__module____qualname____firstlineno____doc__r   r=   r   r   r)   r.   r2   rF   rO   rS   rW   rZ   r]   r`   rc   rg   rk   r   r   __static_attributes__rf   r,   r#   r   r      s   Nf !=@~ . .$ . .$ . .`DIV N& N&b & & I% %B -' -'^ 0' 0'd /( /(bIV%r,   )r   r   r   	functoolsr   networkxr   r   networkx.classes.coreviewsr   networkx.classes.digraphr   networkx.classes.multigraphr	   networkx.classes.reportviewsr
   r   r   r   r   networkx.exceptionr   __all__r   rf   r,   r#   <module>r      sD    "  %   9 , 2  -
o%:w o%r,   