ó
    Êðh—  ã                   ó:   • S r SSKrS/r\R                  S 5       rg)a   
**************
Graph Matching
**************

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
edges; that is, no two edges share a common vertex.

`Wikipedia: Matching <https://en.wikipedia.org/wiki/Matching_(graph_theory)>`_
é    NÚmin_maximal_matchingc                 ó.   • [         R                  " U 5      $ )a¦  Returns the minimum maximal matching of G. That is, out of all maximal
matchings of the graph G, the smallest is returned.

Parameters
----------
G : NetworkX graph
  Undirected graph

Returns
-------
min_maximal_matching : set
  Returns a set of edges such that no two edges share a common endpoint
  and every edge not in the set shares some common endpoint in the set.
  Cardinality will be 2*OPT in the worst case.

Notes
-----
The algorithm computes an approximate solution for the minimum maximal
cardinality matching problem. The solution is no more than 2 * OPT in size.
Runtime is $O(|E|)$.

References
----------
.. [1] Vazirani, Vijay Approximation Algorithms (2001)
)ÚnxÚmaximal_matching)ÚGs    Ú\/var/www/html/env/lib/python3.13/site-packages/networkx/algorithms/approximation/matching.pyr   r      s   € ô6 ×Ò˜qÓ!Ð!ó    )Ú__doc__Únetworkxr   Ú__all__Ú_dispatchabler   © r	   r   Ú<module>r      s1   ðñ	ó à!Ð
"€ð ×Ññ"ó ñ"r	   