
    h                         S r SSKrSSKJr  SSKJr  / SQr\" S5      \R                  S 5       5       r	\" S5      \R                  S	 5       5       r
\" S5      \R                  S
 5       5       rg)zDProvides functions for computing the efficiency of nodes and graphs.    N)NetworkXNoPath   )not_implemented_for)
efficiencylocal_efficiencyglobal_efficiencydirectedc                 b     S[         R                  " XU5      -  nU$ ! [         a    Sn U$ f = f)a  Returns the efficiency of a pair of nodes in a graph.

The *efficiency* of a pair of nodes is the multiplicative inverse of the
shortest path distance between the nodes [1]_. Returns 0 if no path
between nodes.

Parameters
----------
G : :class:`networkx.Graph`
    An undirected graph for which to compute the average local efficiency.
u, v : node
    Nodes in the graph ``G``.

Returns
-------
float
    Multiplicative inverse of the shortest path distance between the nodes.

Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
>>> nx.efficiency(G, 2, 3)  # this gives efficiency for node 2 and 3
0.5

Notes
-----
Edge weights are ignored when computing the shortest path distances.

See also
--------
local_efficiency
global_efficiency

References
----------
.. [1] Latora, Vito, and Massimo Marchiori.
       "Efficient behavior of small-world networks."
       *Physical Review Letters* 87.19 (2001): 198701.
       <https://doi.org/10.1103/PhysRevLett.87.198701>

   r   )nxshortest_path_lengthr   )Guveffs       Y/var/www/html/env/lib/python3.13/site-packages/networkx/algorithms/efficiency_measures.pyr   r      sA    X"))!22 J  Js    ..c                     [        U 5      nXS-
  -  nUS:w  aR  [        R                  " U 5      nSnU H.  u  pVUR                  5        H  u  pxUS:  d  M  USU-  -  nM     M0     XB-  nU$ SnU$ )a  Returns the average global efficiency of the graph.

The *efficiency* of a pair of nodes in a graph is the multiplicative
inverse of the shortest path distance between the nodes. The *average
global efficiency* of a graph is the average efficiency of all pairs of
nodes [1]_.

Parameters
----------
G : :class:`networkx.Graph`
    An undirected graph for which to compute the average global efficiency.

Returns
-------
float
    The average global efficiency of the graph.

Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
>>> round(nx.global_efficiency(G), 12)
0.916666666667

Notes
-----
Edge weights are ignored when computing the shortest path distances.

See also
--------
local_efficiency

References
----------
.. [1] Latora, Vito, and Massimo Marchiori.
       "Efficient behavior of small-world networks."
       *Physical Review Letters* 87.19 (2001): 198701.
       <https://doi.org/10.1103/PhysRevLett.87.198701>

r   r   )lenr   all_pairs_shortest_path_lengthitems)	r   ndenomlengthsg_effsourcetargetstargetdistances	            r   r   r   >   s    T 	AAQKEz33A6&OF$+MMO a<Q\)E %4  ' 	 L  L    c                 J   ^  U 4S jT  5       n[        U5      [        T 5      -  $ )a0  Returns the average local efficiency of the graph.

The *efficiency* of a pair of nodes in a graph is the multiplicative
inverse of the shortest path distance between the nodes. The *local
efficiency* of a node in the graph is the average global efficiency of the
subgraph induced by the neighbors of the node. The *average local
efficiency* is the average of the local efficiencies of each node [1]_.

Parameters
----------
G : :class:`networkx.Graph`
    An undirected graph for which to compute the average local efficiency.

Returns
-------
float
    The average local efficiency of the graph.

Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
>>> nx.local_efficiency(G)
0.9166666666666667

Notes
-----
Edge weights are ignored when computing the shortest path distances.

See also
--------
global_efficiency

References
----------
.. [1] Latora, Vito, and Massimo Marchiori.
       "Efficient behavior of small-world networks."
       *Physical Review Letters* 87.19 (2001): 198701.
       <https://doi.org/10.1103/PhysRevLett.87.198701>

c              3   ^   >#    U  H"  n[        TR                  TU   5      5      v   M$     g 7f)N)r   subgraph).0r   r   s     r   	<genexpr>#local_efficiency.<locals>.<genexpr>   s'     FAq(AaD)9::As   *-)sumr   )r   efficiency_lists   ` r   r   r   {   s%    V GAFO#a&((r   )__doc__networkxr   networkx.exceptionr   utilsr   __all___dispatchabler   r   r    r   r   <module>r/      s    J  - '
A Z .  !.b Z 8  !8v Z *)  !*)r   