from __future__ import annotations

from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Iterable
from typing import Mapping
from typing import Sequence

from narwhals._expression_parsing import ExprKind
from narwhals._expression_parsing import ExprMetadata
from narwhals._expression_parsing import WindowKind
from narwhals._expression_parsing import apply_n_ary_operation
from narwhals._expression_parsing import combine_metadata
from narwhals._expression_parsing import combine_metadata_binary_op
from narwhals._expression_parsing import extract_compliant
from narwhals.dtypes import _validate_dtype
from narwhals.exceptions import InvalidOperationError
from narwhals.exceptions import LengthChangingExprError
from narwhals.expr_cat import ExprCatNamespace
from narwhals.expr_dt import ExprDateTimeNamespace
from narwhals.expr_list import ExprListNamespace
from narwhals.expr_name import ExprNameNamespace
from narwhals.expr_str import ExprStringNamespace
from narwhals.expr_struct import ExprStructNamespace
from narwhals.translate import to_native
from narwhals.utils import _validate_rolling_arguments
from narwhals.utils import flatten
from narwhals.utils import issue_deprecation_warning

if TYPE_CHECKING:
    from typing import TypeVar

    from typing_extensions import Concatenate
    from typing_extensions import ParamSpec
    from typing_extensions import Self
    from typing_extensions import TypeAlias

    from narwhals._compliant import CompliantExpr
    from narwhals._compliant import CompliantNamespace
    from narwhals.dtypes import DType
    from narwhals.typing import ClosedInterval
    from narwhals.typing import FillNullStrategy
    from narwhals.typing import IntoExpr
    from narwhals.typing import NonNestedLiteral
    from narwhals.typing import NumericLiteral
    from narwhals.typing import RankMethod
    from narwhals.typing import RollingInterpolationMethod
    from narwhals.typing import TemporalLiteral

    PS = ParamSpec("PS")
    R = TypeVar("R")
    _ToCompliant: TypeAlias = Callable[
        [CompliantNamespace[Any, Any]], CompliantExpr[Any, Any]
    ]


class Expr:
    def __init__(self, to_compliant_expr: _ToCompliant, metadata: ExprMetadata) -> None:
        # callable from CompliantNamespace to CompliantExpr
        def func(plx: CompliantNamespace[Any, Any]) -> CompliantExpr[Any, Any]:
            result = to_compliant_expr(plx)
            result._metadata = self._metadata
            return result

        self._to_compliant_expr: _ToCompliant = func
        self._metadata = metadata

    def _with_callable(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
        # Instantiate new Expr keeping metadata unchanged, unless
        # it's a WINDOW, in which case make it a TRANSFORM.
        if self._metadata.kind.is_window():
            # We had a window function, but it wasn't immediately followed by
            # `over(order_by=...)` - it missed its chance, it's now forever uncloseable.
            return self.__class__(
                to_compliant_expr,
                self._metadata.with_kind_and_uncloseable_window(ExprKind.TRANSFORM),
            )
        return self.__class__(to_compliant_expr, self._metadata)

    def _with_aggregation(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
        if self._metadata.kind.is_scalar_like():
            msg = "Aggregations can't be applied to scalar-like expressions."
            raise InvalidOperationError(msg)
        return self.__class__(
            to_compliant_expr, self._metadata.with_kind(ExprKind.AGGREGATION)
        )

    def _with_order_dependent_aggregation(
        self, to_compliant_expr: Callable[[Any], Any]
    ) -> Self:
        if self._metadata.kind.is_scalar_like():
            msg = "Aggregations can't be applied to scalar-like expressions."
            raise InvalidOperationError(msg)
        return self.__class__(
            to_compliant_expr,
            self._metadata.with_kind_and_closeable_window(ExprKind.AGGREGATION),
        )

    def _with_filtration(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
        if self._metadata.kind.is_scalar_like():
            msg = "Length-changing can't be applied to scalar-like expressions."
            raise InvalidOperationError(msg)
        return self.__class__(
            to_compliant_expr, self._metadata.with_kind(ExprKind.FILTRATION)
        )

    def __repr__(self) -> str:
        return f"Narwhals Expr\nmetadata: {self._metadata}\n"

    def _taxicab_norm(self) -> Self:
        # This is just used to test out the stable api feature in a realistic-ish way.
        # It's not intended to be used.
        return self._with_aggregation(
            lambda plx: self._to_compliant_expr(plx).abs().sum()
        )

    # --- convert ---
    def alias(self, name: str) -> Self:
        """Rename the expression.

        Arguments:
            name: The new name.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
            >>> df = nw.from_native(df_native)
            >>> df.select((nw.col("b") + 10).alias("c"))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |          c       |
            |      0  14       |
            |      1  15       |
            └──────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).alias(name))

    def pipe(
        self,
        function: Callable[Concatenate[Self, PS], R],
        *args: PS.args,
        **kwargs: PS.kwargs,
    ) -> R:
        """Pipe function call.

        Arguments:
            function: Function to apply.
            args: Positional arguments to pass to function.
            kwargs: Keyword arguments to pass to function.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 4]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_piped=nw.col("a").pipe(lambda x: x + 1))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |     a  a_piped   |
            |  0  1        2   |
            |  1  2        3   |
            |  2  3        4   |
            |  3  4        5   |
            └──────────────────┘
        """
        return function(self, *args, **kwargs)

    def cast(self, dtype: DType | type[DType]) -> Self:
        """Redefine an object's data type.

        Arguments:
            dtype: Data type that the object will be cast into.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"foo": [1, 2, 3], "bar": [6.0, 7.0, 8.0]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("foo").cast(nw.Float32), nw.col("bar").cast(nw.UInt8))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |      foo  bar    |
            |   0  1.0    6    |
            |   1  2.0    7    |
            |   2  3.0    8    |
            └──────────────────┘
        """
        _validate_dtype(dtype)
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).cast(dtype))

    # --- binary ---
    def __eq__(self, other: Self | Any) -> Self:  # type: ignore[override]
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x == y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __ne__(self, other: Self | Any) -> Self:  # type: ignore[override]
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x != y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __and__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x & y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rand__(self, other: Any) -> Self:
        return (self & other).alias("literal")  # type: ignore[no-any-return]

    def __or__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x | y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __ror__(self, other: Any) -> Self:
        return (self | other).alias("literal")  # type: ignore[no-any-return]

    def __add__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x + y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __radd__(self, other: Any) -> Self:
        return (self + other).alias("literal")  # type: ignore[no-any-return]

    def __sub__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x - y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rsub__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda x, y: x.__rsub__(y),
                self,
                other,
                str_as_lit=True,
            ),
            combine_metadata_binary_op(self, other),
        )

    def __truediv__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x / y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rtruediv__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda x, y: x.__rtruediv__(y),
                self,
                other,
                str_as_lit=True,
            ),
            combine_metadata_binary_op(self, other),
        )

    def __mul__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x * y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rmul__(self, other: Any) -> Self:
        return (self * other).alias("literal")  # type: ignore[no-any-return]

    def __le__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x <= y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __lt__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x < y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __gt__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x > y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __ge__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x >= y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __pow__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x**y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rpow__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda x, y: x.__rpow__(y),
                self,
                other,
                str_as_lit=True,
            ),
            combine_metadata_binary_op(self, other),
        )

    def __floordiv__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x // y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rfloordiv__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda x, y: x.__rfloordiv__(y),
                self,
                other,
                str_as_lit=True,
            ),
            combine_metadata_binary_op(self, other),
        )

    def __mod__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, lambda x, y: x % y, self, other, str_as_lit=True
            ),
            combine_metadata_binary_op(self, other),
        )

    def __rmod__(self, other: Any) -> Self:
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda x, y: x.__rmod__(y),
                self,
                other,
                str_as_lit=True,
            ),
            combine_metadata_binary_op(self, other),
        )

    # --- unary ---
    def __invert__(self) -> Self:
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).__invert__())

    def any(self) -> Self:
        """Return whether any of the values in the column are `True`.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").any())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a     b   |
            |  0  True  True   |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).any())

    def all(self) -> Self:
        """Return whether all values in the column are `True`.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").all())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |         a     b  |
            |  0  False  True  |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).all())

    def ewm_mean(
        self,
        *,
        com: float | None = None,
        span: float | None = None,
        half_life: float | None = None,
        alpha: float | None = None,
        adjust: bool = True,
        min_samples: int = 1,
        ignore_nulls: bool = False,
    ) -> Self:
        r"""Compute exponentially-weighted moving average.

        Arguments:
            com: Specify decay in terms of center of mass, $\gamma$, with <br> $\alpha = \frac{1}{1+\gamma}\forall\gamma\geq0$
            span: Specify decay in terms of span, $\theta$, with <br> $\alpha = \frac{2}{\theta + 1} \forall \theta \geq 1$
            half_life: Specify decay in terms of half-life, $\tau$, with <br> $\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \tau } \right\} \forall \tau > 0$
            alpha: Specify smoothing factor alpha directly, $0 < \alpha \leq 1$.
            adjust: Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings

                - When `adjust=True` (the default) the EW function is calculated
                  using weights $w_i = (1 - \alpha)^i$
                - When `adjust=False` the EW function is calculated recursively by
                  $$
                  y_0=x_0
                  $$
                  $$
                  y_t = (1 - \alpha)y_{t - 1} + \alpha x_t
                  $$
            min_samples: Minimum number of observations in window required to have a value, (otherwise result is null).
            ignore_nulls: Ignore missing values when calculating weights.

                - When `ignore_nulls=False` (default), weights are based on absolute
                  positions.
                  For example, the weights of $x_0$ and $x_2$ used in
                  calculating the final weighted average of $[x_0, None, x_2]$ are
                  $(1-\alpha)^2$ and $1$ if `adjust=True`, and
                  $(1-\alpha)^2$ and $\alpha$ if `adjust=False`.
                - When `ignore_nulls=True`, weights are based
                  on relative positions. For example, the weights of
                  $x_0$ and $x_2$ used in calculating the final weighted
                  average of $[x_0, None, x_2]$ are
                  $1-\alpha$ and $1$ if `adjust=True`,
                  and $1-\alpha$ and $\alpha$ if `adjust=False`.

        Returns:
            Expr

        Examples:
            >>> import pandas as pd
            >>> import polars as pl
            >>> import narwhals as nw
            >>> from narwhals.typing import IntoFrameT
            >>>
            >>> data = {"a": [1, 2, 3]}
            >>> df_pd = pd.DataFrame(data)
            >>> df_pl = pl.DataFrame(data)

            We define a library agnostic function:

            >>> def agnostic_ewm_mean(df_native: IntoFrameT) -> IntoFrameT:
            ...     df = nw.from_native(df_native)
            ...     return df.select(
            ...         nw.col("a").ewm_mean(com=1, ignore_nulls=False)
            ...     ).to_native()

            We can then pass either pandas or Polars to `agnostic_ewm_mean`:

            >>> agnostic_ewm_mean(df_pd)
                      a
            0  1.000000
            1  1.666667
            2  2.428571

            >>> agnostic_ewm_mean(df_pl)  # doctest: +NORMALIZE_WHITESPACE
            shape: (3, 1)
            ┌──────────┐
            │ a        │
            │ ---      │
            │ f64      │
            ╞══════════╡
            │ 1.0      │
            │ 1.666667 │
            │ 2.428571 │
            └──────────┘
        """
        return self._with_callable(
            lambda plx: self._to_compliant_expr(plx).ewm_mean(
                com=com,
                span=span,
                half_life=half_life,
                alpha=alpha,
                adjust=adjust,
                min_samples=min_samples,
                ignore_nulls=ignore_nulls,
            )
        )

    def mean(self) -> Self:
        """Get mean value.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [-1, 0, 1], "b": [2, 4, 6]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").mean())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a    b    |
            |   0  0.0  4.0    |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).mean())

    def median(self) -> Self:
        """Get median value.

        Returns:
            A new expression.

        Notes:
            Results might slightly differ across backends due to differences in the underlying algorithms used to compute the median.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").median())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a    b    |
            |   0  3.0  4.0    |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).median())

    def std(self, *, ddof: int = 1) -> Self:
        """Get standard deviation.

        Arguments:
            ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
                where N represents the number of elements. By default ddof is 1.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").std(ddof=0))
            ┌─────────────────────┐
            | Narwhals DataFrame  |
            |---------------------|
            |          a         b|
            |0  17.79513  1.265789|
            └─────────────────────┘
        """
        return self._with_aggregation(
            lambda plx: self._to_compliant_expr(plx).std(ddof=ddof)
        )

    def var(self, *, ddof: int = 1) -> Self:
        """Get variance.

        Arguments:
            ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
                     where N represents the number of elements. By default ddof is 1.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").var(ddof=0))
            ┌───────────────────────┐
            |  Narwhals DataFrame   |
            |-----------------------|
            |            a         b|
            |0  316.666667  1.602222|
            └───────────────────────┘
        """
        return self._with_aggregation(
            lambda plx: self._to_compliant_expr(plx).var(ddof=ddof)
        )

    def map_batches(
        self,
        function: Callable[[Any], CompliantExpr[Any, Any]],
        return_dtype: DType | None = None,
    ) -> Self:
        """Apply a custom python function to a whole Series or sequence of Series.

        The output of this custom function is presumed to be either a Series,
        or a NumPy array (in which case it will be automatically converted into
        a Series).

        Arguments:
            function: Function to apply to Series.
            return_dtype: Dtype of the output Series.
                If not set, the dtype will be inferred based on the first non-null value
                that is returned by the function.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a", "b")
            ...     .map_batches(lambda s: s.to_numpy() + 1, return_dtype=nw.Float64)
            ...     .name.suffix("_mapped")
            ... )
            ┌───────────────────────────┐
            |    Narwhals DataFrame     |
            |---------------------------|
            |   a  b  a_mapped  b_mapped|
            |0  1  4       2.0       5.0|
            |1  2  5       3.0       6.0|
            |2  3  6       4.0       7.0|
            └───────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).map_batches(
                function=function, return_dtype=return_dtype
            ),
            # safest assumptions
            self._metadata.with_kind_and_closeable_window(ExprKind.FILTRATION),
        )

    def skew(self) -> Self:
        """Calculate the sample skewness of a column.

        Returns:
            An expression representing the sample skewness of the column.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 2, 10, 100]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").skew())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |      a         b |
            | 0  0.0  1.472427 |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).skew())

    def sum(self) -> Expr:
        """Return the sum value.

        Returns:
            A new expression.

        Examples:
            >>> import duckdb
            >>> import narwhals as nw
            >>> df_native = duckdb.sql("SELECT * FROM VALUES (5, 50), (10, 100) df(a, b)")
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").sum())
            ┌───────────────────┐
            |Narwhals LazyFrame |
            |-------------------|
            |┌────────┬────────┐|
            |│   a    │   b    │|
            |│ int128 │ int128 │|
            |├────────┼────────┤|
            |│     15 │    150 │|
            |└────────┴────────┘|
            └───────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).sum())

    def min(self) -> Self:
        """Returns the minimum value(s) from a column(s).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.min("a", "b"))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a  b      |
            |     0  1  3      |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).min())

    def max(self) -> Self:
        """Returns the maximum value(s) from a column(s).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [10, 20], "b": [50, 100]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.max("a", "b"))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a    b    |
            |    0  20  100    |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).max())

    def arg_min(self) -> Self:
        """Returns the index of the minimum value.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [10, 20], "b": [150, 100]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").arg_min().name.suffix("_arg_min"))
            ┌───────────────────────┐
            |  Narwhals DataFrame   |
            |-----------------------|
            |   a_arg_min  b_arg_min|
            |0          0          1|
            └───────────────────────┘
        """
        return self._with_order_dependent_aggregation(
            lambda plx: self._to_compliant_expr(plx).arg_min()
        )

    def arg_max(self) -> Self:
        """Returns the index of the maximum value.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [10, 20], "b": [150, 100]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").arg_max().name.suffix("_arg_max"))
            ┌───────────────────────┐
            |  Narwhals DataFrame   |
            |-----------------------|
            |   a_arg_max  b_arg_max|
            |0          1          0|
            └───────────────────────┘
        """
        return self._with_order_dependent_aggregation(
            lambda plx: self._to_compliant_expr(plx).arg_max()
        )

    def count(self) -> Self:
        """Returns the number of non-null elements in the column.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [None, 4, 4]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.all().count())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a  b      |
            |     0  3  2      |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).count())

    def n_unique(self) -> Self:
        """Returns count of unique values.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 3, 3, 5]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").n_unique())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a  b      |
            |     0  5  3      |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).n_unique())

    def unique(self) -> Self:
        """Return unique values of this expression.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").unique().sum())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a   b     |
            |     0  9  12     |
            └──────────────────┘
        """
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).unique())

    def abs(self) -> Self:
        """Return absolute value of each element.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, -2], "b": [-3, 4]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(nw.col("a", "b").abs().name.suffix("_abs"))
            ┌─────────────────────┐
            | Narwhals DataFrame  |
            |---------------------|
            |   a  b  a_abs  b_abs|
            |0  1 -3      1      3|
            |1 -2  4      2      4|
            └─────────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).abs())

    def cum_sum(self, *, reverse: bool = False) -> Self:
        """Return cumulative sum.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            reverse: reverse the operation

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_cum_sum=nw.col("a").cum_sum())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |   a  b  a_cum_sum|
            |0  1  2          1|
            |1  1  4          2|
            |2  3  4          5|
            |3  5  6         10|
            |4  5  6         15|
            └──────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).cum_sum(reverse=reverse),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def diff(self) -> Self:
        """Returns the difference between each element and the previous one.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Returns:
            A new expression.

        Notes:
            pandas may change the dtype here, for example when introducing missing
            values in an integer column. To ensure, that the dtype doesn't change,
            you may want to use `fill_null` and `cast`. For example, to calculate
            the diff and fill missing values with `0` in a Int64 column, you could
            do:

                nw.col("a").diff().fill_null(0).cast(nw.Int64)

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_diff=nw.col("a").diff())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            | shape: (5, 2)    |
            | ┌─────┬────────┐ |
            | │ a   ┆ a_diff │ |
            | │ --- ┆ ---    │ |
            | │ i64 ┆ i64    │ |
            | ╞═════╪════════╡ |
            | │ 1   ┆ null   │ |
            | │ 1   ┆ 0      │ |
            | │ 3   ┆ 2      │ |
            | │ 5   ┆ 2      │ |
            | │ 5   ┆ 0      │ |
            | └─────┴────────┘ |
            └──────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).diff(),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def shift(self, n: int) -> Self:
        """Shift values by `n` positions.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            n: Number of positions to shift values by.

        Returns:
            A new expression.

        Notes:
            pandas may change the dtype here, for example when introducing missing
            values in an integer column. To ensure, that the dtype doesn't change,
            you may want to use `fill_null` and `cast`. For example, to shift
            and fill missing values with `0` in a Int64 column, you could
            do:

                nw.col("a").shift(1).fill_null(0).cast(nw.Int64)

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_shift=nw.col("a").shift(n=1))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |shape: (5, 2)     |
            |┌─────┬─────────┐ |
            |│ a   ┆ a_shift │ |
            |│ --- ┆ ---     │ |
            |│ i64 ┆ i64     │ |
            |╞═════╪═════════╡ |
            |│ 1   ┆ null    │ |
            |│ 1   ┆ 1       │ |
            |│ 3   ┆ 1       │ |
            |│ 5   ┆ 3       │ |
            |│ 5   ┆ 5       │ |
            |└─────┴─────────┘ |
            └──────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).shift(n),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def replace_strict(
        self,
        old: Sequence[Any] | Mapping[Any, Any],
        new: Sequence[Any] | None = None,
        *,
        return_dtype: DType | type[DType] | None = None,
    ) -> Self:
        """Replace all values by different values.

        This function must replace all non-null input values (else it raises an error).

        Arguments:
            old: Sequence of values to replace. It also accepts a mapping of values to
                their replacement as syntactic sugar for
                `replace_all(old=list(mapping.keys()), new=list(mapping.values()))`.
            new: Sequence of values to replace by. Length must match the length of `old`.
            return_dtype: The data type of the resulting expression. If set to `None`
                (default), the data type is determined automatically based on the other
                inputs.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [3, 0, 1, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     b=nw.col("a").replace_strict(
            ...         [0, 1, 2, 3],
            ...         ["zero", "one", "two", "three"],
            ...         return_dtype=nw.String,
            ...     )
            ... )
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |      a      b    |
            |   0  3  three    |
            |   1  0   zero    |
            |   2  1    one    |
            |   3  2    two    |
            └──────────────────┘
        """
        if new is None:
            if not isinstance(old, Mapping):
                msg = "`new` argument is required if `old` argument is not a Mapping type"
                raise TypeError(msg)

            new = list(old.values())
            old = list(old.keys())

        return self._with_callable(
            lambda plx: self._to_compliant_expr(plx).replace_strict(
                old, new, return_dtype=return_dtype
            )
        )

    def sort(self, *, descending: bool = False, nulls_last: bool = False) -> Self:
        """Sort this column. Place null values first.

        !!! warning
            `Expr.sort` is deprecated and will be removed in a future version.
            Hint: instead of `df.select(nw.col('a').sort())`, use
            `df.select(nw.col('a')).sort()` instead.
            Note: this will remain available in `narwhals.stable.v1`.
            See [stable api](../backcompat.md/) for more information.

        Arguments:
            descending: Sort in descending order.
            nulls_last: Place null values last instead of first.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.sort` is deprecated and will be removed in a future version.\n\n"
            "Hint: instead of `df.select(nw.col('a').sort())`, use `df.select(nw.col('a')).sort()`.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).sort(
                descending=descending, nulls_last=nulls_last
            ),
            self._metadata.with_uncloseable_window(),
        )

    # --- transform ---
    def is_between(
        self,
        lower_bound: Any | IntoExpr,
        upper_bound: Any | IntoExpr,
        closed: ClosedInterval = "both",
    ) -> Self:
        """Check if this expression is between the given lower and upper bounds.

        Arguments:
            lower_bound: Lower bound value. String literals are interpreted as column names.
            upper_bound: Upper bound value. String literals are interpreted as column names.
            closed: Define which sides of the interval are closed (inclusive).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(b=nw.col("a").is_between(2, 4, "right"))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |      a      b    |
            |   0  1  False    |
            |   1  2  False    |
            |   2  3   True    |
            |   3  4   True    |
            |   4  5  False    |
            └──────────────────┘
        """

        def func(
            compliant_expr: CompliantExpr[Any, Any],
            lb: CompliantExpr[Any, Any],
            ub: CompliantExpr[Any, Any],
        ) -> CompliantExpr[Any, Any]:
            if closed == "left":
                return (compliant_expr >= lb) & (compliant_expr < ub)
            elif closed == "right":
                return (compliant_expr > lb) & (compliant_expr <= ub)
            elif closed == "none":
                return (compliant_expr > lb) & (compliant_expr < ub)
            return (compliant_expr >= lb) & (compliant_expr <= ub)

        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx, func, self, lower_bound, upper_bound, str_as_lit=False
            ),
            combine_metadata(
                self,
                lower_bound,
                upper_bound,
                str_as_lit=False,
                allow_multi_output=False,
                to_single_output=False,
            ),
        )

    def is_in(self, other: Any) -> Self:
        """Check if elements of this expression are present in the other iterable.

        Arguments:
            other: iterable

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 9, 10]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(b=nw.col("a").is_in([1, 2]))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |       a      b   |
            |   0   1   True   |
            |   1   2   True   |
            |   2   9  False   |
            |   3  10  False   |
            └──────────────────┘
        """
        if isinstance(other, Iterable) and not isinstance(other, (str, bytes)):
            return self._with_callable(
                lambda plx: self._to_compliant_expr(plx).is_in(
                    to_native(other, pass_through=True)
                ),
            )
        else:
            msg = "Narwhals `is_in` doesn't accept expressions as an argument, as opposed to Polars. You should provide an iterable instead."
            raise NotImplementedError(msg)

    def filter(self, *predicates: Any) -> Self:
        """Filters elements based on a condition, returning a new expression.

        Arguments:
            predicates: Conditions to filter by (which get ANDed together).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame(
            ...     {"a": [2, 3, 4, 5, 6, 7], "b": [10, 11, 12, 13, 14, 15]}
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.select(
            ...     nw.col("a").filter(nw.col("a") > 4),
            ...     nw.col("b").filter(nw.col("b") < 13),
            ... )
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a   b     |
            |     3  5  10     |
            |     4  6  11     |
            |     5  7  12     |
            └──────────────────┘
        """
        flat_predicates = flatten(predicates)
        metadata = combine_metadata(
            self,
            *flat_predicates,
            str_as_lit=False,
            allow_multi_output=True,
            to_single_output=False,
        ).with_kind(ExprKind.FILTRATION)
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda *exprs: exprs[0].filter(*exprs[1:]),
                self,
                *flat_predicates,
                str_as_lit=False,
            ),
            metadata,
        )

    def is_null(self) -> Self:
        """Returns a boolean Series indicating which values are null.

        Returns:
            A new expression.

        Notes:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.

        Examples:
            >>> import duckdb
            >>> import narwhals as nw
            >>> df_native = duckdb.sql(
            ...     "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_is_null=nw.col("a").is_null(), b_is_null=nw.col("b").is_null()
            ... )
            ┌──────────────────────────────────────────┐
            |            Narwhals LazyFrame            |
            |------------------------------------------|
            |┌───────┬────────┬───────────┬───────────┐|
            |│   a   │   b    │ a_is_null │ b_is_null │|
            |│ int32 │ double │  boolean  │  boolean  │|
            |├───────┼────────┼───────────┼───────────┤|
            |│  NULL │    nan │ true      │ false     │|
            |│     2 │    2.0 │ false     │ false     │|
            |└───────┴────────┴───────────┴───────────┘|
            └──────────────────────────────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).is_null())

    def is_nan(self) -> Self:
        """Indicate which values are NaN.

        Returns:
            A new expression.

        Notes:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.

        Examples:
            >>> import duckdb
            >>> import narwhals as nw
            >>> df_native = duckdb.sql(
            ...     "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_is_nan=nw.col("a").is_nan(), b_is_nan=nw.col("b").is_nan()
            ... )
            ┌────────────────────────────────────────┐
            |           Narwhals LazyFrame           |
            |----------------------------------------|
            |┌───────┬────────┬──────────┬──────────┐|
            |│   a   │   b    │ a_is_nan │ b_is_nan │|
            |│ int32 │ double │ boolean  │ boolean  │|
            |├───────┼────────┼──────────┼──────────┤|
            |│  NULL │    nan │ NULL     │ true     │|
            |│     2 │    2.0 │ false    │ false    │|
            |└───────┴────────┴──────────┴──────────┘|
            └────────────────────────────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).is_nan())

    def arg_true(self) -> Self:
        """Find elements where boolean expression is True.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.arg_true` is deprecated and will be removed in a future version.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).arg_true())

    def fill_null(
        self,
        value: Expr | NonNestedLiteral = None,
        strategy: FillNullStrategy | None = None,
        limit: int | None = None,
    ) -> Self:
        """Fill null values with given value.

        Arguments:
            value: Value or expression used to fill null values.
            strategy: Strategy used to fill null values.
            limit: Number of consecutive null values to fill when using the 'forward' or 'backward' strategy.

        Returns:
            A new expression.

        Notes:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame(
            ...     {
            ...         "a": [2, None, None, 3],
            ...         "b": [2.0, float("nan"), float("nan"), 3.0],
            ...         "c": [1, 2, 3, 4],
            ...     }
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a", "b").fill_null(0).name.suffix("_filled"),
            ...     nw.col("a").fill_null(nw.col("c")).name.suffix("_filled_with_c"),
            ... )
            ┌────────────────────────────────────────────────────────────┐
            |                     Narwhals DataFrame                     |
            |------------------------------------------------------------|
            |shape: (4, 6)                                               |
            |┌──────┬─────┬─────┬──────────┬──────────┬─────────────────┐|
            |│ a    ┆ b   ┆ c   ┆ a_filled ┆ b_filled ┆ a_filled_with_c │|
            |│ ---  ┆ --- ┆ --- ┆ ---      ┆ ---      ┆ ---             │|
            |│ i64  ┆ f64 ┆ i64 ┆ i64      ┆ f64      ┆ i64             │|
            |╞══════╪═════╪═════╪══════════╪══════════╪═════════════════╡|
            |│ 2    ┆ 2.0 ┆ 1   ┆ 2        ┆ 2.0      ┆ 2               │|
            |│ null ┆ NaN ┆ 2   ┆ 0        ┆ NaN      ┆ 2               │|
            |│ null ┆ NaN ┆ 3   ┆ 0        ┆ NaN      ┆ 3               │|
            |│ 3    ┆ 3.0 ┆ 4   ┆ 3        ┆ 3.0      ┆ 3               │|
            |└──────┴─────┴─────┴──────────┴──────────┴─────────────────┘|
            └────────────────────────────────────────────────────────────┘

            Using a strategy:

            >>> df.select(
            ...     nw.col("a", "b"),
            ...     nw.col("a", "b")
            ...     .fill_null(strategy="forward", limit=1)
            ...     .name.suffix("_nulls_forward_filled"),
            ... )
            ┌────────────────────────────────────────────────────────────────┐
            |                       Narwhals DataFrame                       |
            |----------------------------------------------------------------|
            |shape: (4, 4)                                                   |
            |┌──────┬─────┬────────────────────────┬────────────────────────┐|
            |│ a    ┆ b   ┆ a_nulls_forward_filled ┆ b_nulls_forward_filled │|
            |│ ---  ┆ --- ┆ ---                    ┆ ---                    │|
            |│ i64  ┆ f64 ┆ i64                    ┆ f64                    │|
            |╞══════╪═════╪════════════════════════╪════════════════════════╡|
            |│ 2    ┆ 2.0 ┆ 2                      ┆ 2.0                    │|
            |│ null ┆ NaN ┆ 2                      ┆ NaN                    │|
            |│ null ┆ NaN ┆ null                   ┆ NaN                    │|
            |│ 3    ┆ 3.0 ┆ 3                      ┆ 3.0                    │|
            |└──────┴─────┴────────────────────────┴────────────────────────┘|
            └────────────────────────────────────────────────────────────────┘
        """
        if value is not None and strategy is not None:
            msg = "cannot specify both `value` and `strategy`"
            raise ValueError(msg)
        if value is None and strategy is None:
            msg = "must specify either a fill `value` or `strategy`"
            raise ValueError(msg)
        if strategy is not None and strategy not in {"forward", "backward"}:
            msg = f"strategy not supported: {strategy}"
            raise ValueError(msg)
        return self._with_callable(
            lambda plx: self._to_compliant_expr(plx).fill_null(
                value=extract_compliant(plx, value, str_as_lit=True),
                strategy=strategy,
                limit=limit,
            )
        )

    # --- partial reduction ---
    def drop_nulls(self) -> Self:
        """Drop null values.

        Returns:
            A new expression.

        Notes:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [2.0, 4.0, float("nan"), 3.0, None, 5.0]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a").drop_nulls())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |  shape: (5, 1)   |
            |  ┌─────┐         |
            |  │ a   │         |
            |  │ --- │         |
            |  │ f64 │         |
            |  ╞═════╡         |
            |  │ 2.0 │         |
            |  │ 4.0 │         |
            |  │ NaN │         |
            |  │ 3.0 │         |
            |  │ 5.0 │         |
            |  └─────┘         |
            └──────────────────┘
        """
        return self._with_filtration(
            lambda plx: self._to_compliant_expr(plx).drop_nulls()
        )

    def sample(
        self,
        n: int | None = None,
        *,
        fraction: float | None = None,
        with_replacement: bool = False,
        seed: int | None = None,
    ) -> Self:
        """Sample randomly from this expression.

        !!! warning
            `Expr.sample` is deprecated and will be removed in a future version.
            Hint: instead of `df.select(nw.col('a').sample())`, use
            `df.select(nw.col('a')).sample()` instead.
            Note: this will remain available in `narwhals.stable.v1`.
            See [stable api](../backcompat.md/) for more information.

        Arguments:
            n: Number of items to return. Cannot be used with fraction.
            fraction: Fraction of items to return. Cannot be used with n.
            with_replacement: Allow values to be sampled more than once.
            seed: Seed for the random number generator. If set to None (default), a random
                seed is generated for each sample operation.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.sample` is deprecated and will be removed in a future version.\n\n"
            "Hint: instead of `df.select(nw.col('a').sample())`, use `df.select(nw.col('a')).sample()`.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self._with_filtration(
            lambda plx: self._to_compliant_expr(plx).sample(
                n, fraction=fraction, with_replacement=with_replacement, seed=seed
            )
        )

    def over(
        self,
        *partition_by: str | Sequence[str],
        order_by: str | Sequence[str] | None = None,
    ) -> Self:
        """Compute expressions over the given groups (optionally with given order).

        Arguments:
            partition_by: Names of columns to compute window expression over.
                Must be names of columns, as opposed to expressions -
                so, this is a bit less flexible than Polars' `Expr.over`.
            order_by: Column(s) to order window functions by.
                For lazy backends, this argument is required when `over` is applied
                to order-dependent functions, see [order-dependence](../basics/order_dependence.md).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 4], "b": ["x", "x", "y"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_min_per_group=nw.col("a").min().over("b"))
            ┌────────────────────────┐
            |   Narwhals DataFrame   |
            |------------------------|
            |   a  b  a_min_per_group|
            |0  1  x                1|
            |1  2  x                1|
            |2  4  y                4|
            └────────────────────────┘

            Cumulative operations are also supported, but (currently) only for
            pandas and Polars:

            >>> df.with_columns(a_cum_sum_per_group=nw.col("a").cum_sum().over("b"))
            ┌────────────────────────────┐
            |     Narwhals DataFrame     |
            |----------------------------|
            |   a  b  a_cum_sum_per_group|
            |0  1  x                    1|
            |1  2  x                    3|
            |2  4  y                    4|
            └────────────────────────────┘
        """
        if self._metadata.kind.is_filtration():
            msg = "`.over()` can not be used for expressions which change length."
            raise LengthChangingExprError(msg)

        flat_partition_by = flatten(partition_by)
        flat_order_by = [order_by] if isinstance(order_by, str) else order_by
        if not flat_partition_by and not flat_order_by:  # pragma: no cover
            msg = "At least one of `partition_by` or `order_by` must be specified."
            raise ValueError(msg)

        kind = ExprKind.TRANSFORM
        window_kind = self._metadata.window_kind
        if window_kind.is_closed():
            msg = "Nested `over` statements are not allowed."
            raise InvalidOperationError(msg)
        if flat_order_by is not None and self._metadata.kind.is_window():
            # debug assertion, an open window should already have been set
            # by the window function. If it's immediately followed by `over`, then the
            # window gets closed.
            assert window_kind.is_open()  # noqa: S101
        elif flat_order_by is not None and not window_kind.is_open():
            msg = "Cannot use `order_by` in `over` on expression which isn't order-dependent."
            raise InvalidOperationError(msg)
        current_meta = self._metadata
        next_window_kind = (
            WindowKind.UNCLOSEABLE if window_kind.is_uncloseable() else WindowKind.CLOSED
        )
        next_meta = ExprMetadata(
            kind,
            window_kind=next_window_kind,
            expansion_kind=current_meta.expansion_kind,
        )

        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).over(
                flat_partition_by, flat_order_by
            ),
            next_meta,
        )

    def is_duplicated(self) -> Self:
        r"""Return a boolean mask indicating duplicated values.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(nw.all().is_duplicated().name.suffix("_is_duplicated"))
            ┌─────────────────────────────────────────┐
            |           Narwhals DataFrame            |
            |-----------------------------------------|
            |   a  b  a_is_duplicated  b_is_duplicated|
            |0  1  a             True             True|
            |1  2  a            False             True|
            |2  3  b            False            False|
            |3  1  c             True            False|
            └─────────────────────────────────────────┘
        """
        return ~self.is_unique()

    def is_unique(self) -> Self:
        r"""Return a boolean mask indicating unique values.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(nw.all().is_unique().name.suffix("_is_unique"))
            ┌─────────────────────────────────┐
            |       Narwhals DataFrame        |
            |---------------------------------|
            |   a  b  a_is_unique  b_is_unique|
            |0  1  a        False        False|
            |1  2  a         True        False|
            |2  3  b         True         True|
            |3  1  c        False         True|
            └─────────────────────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).is_unique())

    def null_count(self) -> Self:
        r"""Count null values.

        Returns:
            A new expression.

        Notes:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame(
            ...     {"a": [1, 2, None, 1], "b": ["a", None, "b", None]}
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.all().null_count())
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a  b      |
            |     0  1  2      |
            └──────────────────┘
        """
        return self._with_aggregation(
            lambda plx: self._to_compliant_expr(plx).null_count()
        )

    def is_first_distinct(self) -> Self:
        r"""Return a boolean mask indicating the first occurrence of each distinct value.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.all().is_first_distinct().name.suffix("_is_first_distinct")
            ... )
            ┌─────────────────────────────────────────────────┐
            |               Narwhals DataFrame                |
            |-------------------------------------------------|
            |   a  b  a_is_first_distinct  b_is_first_distinct|
            |0  1  a                 True                 True|
            |1  2  a                 True                False|
            |2  3  b                 True                 True|
            |3  1  c                False                 True|
            └─────────────────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).is_first_distinct(),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def is_last_distinct(self) -> Self:
        r"""Return a boolean mask indicating the last occurrence of each distinct value.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.all().is_last_distinct().name.suffix("_is_last_distinct")
            ... )
            ┌───────────────────────────────────────────────┐
            |              Narwhals DataFrame               |
            |-----------------------------------------------|
            |   a  b  a_is_last_distinct  b_is_last_distinct|
            |0  1  a               False               False|
            |1  2  a                True                True|
            |2  3  b                True                True|
            |3  1  c                True                True|
            └───────────────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).is_last_distinct(),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def quantile(
        self, quantile: float, interpolation: RollingInterpolationMethod
    ) -> Self:
        r"""Get quantile value.

        Arguments:
            quantile: Quantile between 0.0 and 1.0.
            interpolation: Interpolation method.

        Returns:
            A new expression.

        Note:
            - pandas and Polars may have implementation differences for a given interpolation method.
            - [dask](https://docs.dask.org/en/stable/generated/dask.dataframe.Series.quantile.html) has
                its own method to approximate quantile and it doesn't implement 'nearest', 'higher',
                'lower', 'midpoint' as interpolation method - use 'linear' which is closest to the
                native 'dask' - method.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame(
            ...     {"a": list(range(50)), "b": list(range(50, 100))}
            ... )
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a", "b").quantile(0.5, interpolation="linear"))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |        a     b   |
            |  0  24.5  74.5   |
            └──────────────────┘
        """
        return self._with_aggregation(
            lambda plx: self._to_compliant_expr(plx).quantile(quantile, interpolation)
        )

    def head(self, n: int = 10) -> Self:
        r"""Get the first `n` rows.

        !!! warning
            `Expr.head` is deprecated and will be removed in a future version.
            Hint: instead of `df.select(nw.col('a').head())`, use
            `df.select(nw.col('a')).head()` instead.
            Note: this will remain available in `narwhals.stable.v1`.
            See [stable api](../backcompat.md/) for more information.

        Arguments:
            n: Number of rows to return.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.head` is deprecated and will be removed in a future version.\n\n"
            "Hint: instead of `df.select(nw.col('a').head())`, use `df.select(nw.col('a')).head()`.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).head(n))

    def tail(self, n: int = 10) -> Self:
        r"""Get the last `n` rows.

        !!! warning
            `Expr.tail` is deprecated and will be removed in a future version.
            Hint: instead of `df.select(nw.col('a').tail())`, use
            `df.select(nw.col('a')).tail()` instead.
            Note: this will remain available in `narwhals.stable.v1`.
            See [stable api](../backcompat.md/) for more information.

        Arguments:
            n: Number of rows to return.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.tail` is deprecated and will be removed in a future version.\n\n"
            "Hint: instead of `df.select(nw.col('a').tail())`, use `df.select(nw.col('a')).tail()`.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).tail(n))

    def round(self, decimals: int = 0) -> Self:
        r"""Round underlying floating point data by `decimals` digits.

        Arguments:
            decimals: Number of decimals to round by.

        Returns:
            A new expression.


        Notes:
            For values exactly halfway between rounded decimal values pandas behaves differently than Polars and Arrow.

            pandas rounds to the nearest even value (e.g. -0.5 and 0.5 round to 0.0, 1.5 and 2.5 round to 2.0, 3.5 and
            4.5 to 4.0, etc..).

            Polars and Arrow round away from 0 (e.g. -0.5 to -1.0, 0.5 to 1.0, 1.5 to 2.0, 2.5 to 3.0, etc..).

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1.12345, 2.56789, 3.901234]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_rounded=nw.col("a").round(1))
            ┌──────────────────────┐
            |  Narwhals DataFrame  |
            |----------------------|
            |          a  a_rounded|
            |0  1.123450        1.1|
            |1  2.567890        2.6|
            |2  3.901234        3.9|
            └──────────────────────┘
        """
        return self._with_callable(
            lambda plx: self._to_compliant_expr(plx).round(decimals)
        )

    def len(self) -> Self:
        r"""Return the number of elements in the column.

        Null values count towards the total.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": ["x", "y", "z"], "b": [1, 2, 1]})
            >>> df = nw.from_native(df_native)
            >>> df.select(
            ...     nw.col("a").filter(nw.col("b") == 1).len().alias("a1"),
            ...     nw.col("a").filter(nw.col("b") == 2).len().alias("a2"),
            ... )
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |       a1  a2     |
            |    0   2   1     |
            └──────────────────┘
        """
        return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).len())

    def gather_every(self, n: int, offset: int = 0) -> Self:
        r"""Take every nth value in the Series and return as new Series.

        !!! warning
            `Expr.gather_every` is deprecated and will be removed in a future version.
            Hint: instead of `df.select(nw.col('a').gather_every())`, use
            `df.select(nw.col('a')).gather_every()` instead.
            Note: this will remain available in `narwhals.stable.v1`.
            See [stable api](../backcompat.md/) for more information.

        Arguments:
            n: Gather every *n*-th row.
            offset: Starting index.

        Returns:
            A new expression.
        """
        msg = (
            "`Expr.gather_every` is deprecated and will be removed in a future version.\n\n"
            "Hint: instead of `df.select(nw.col('a').gather_every())`, use `df.select(nw.col('a')).gather_every()`.\n\n"
            "Note: this will remain available in `narwhals.stable.v1`.\n"
            "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
        )
        issue_deprecation_warning(msg, _version="1.23.0")
        return self._with_filtration(
            lambda plx: self._to_compliant_expr(plx).gather_every(n=n, offset=offset)
        )

    def clip(
        self,
        lower_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
        upper_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
    ) -> Self:
        r"""Clip values in the Series.

        Arguments:
            lower_bound: Lower bound value. String literals are treated as column names.
            upper_bound: Upper bound value. String literals are treated as column names.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_clipped=nw.col("a").clip(-1, 3))
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |    a  a_clipped  |
            | 0  1          1  |
            | 1  2          2  |
            | 2  3          3  |
            └──────────────────┘
        """
        return self.__class__(
            lambda plx: apply_n_ary_operation(
                plx,
                lambda *exprs: exprs[0].clip(
                    exprs[1] if lower_bound is not None else None,
                    exprs[2] if upper_bound is not None else None,
                ),
                self,
                lower_bound,
                upper_bound,
                str_as_lit=False,
            ),
            combine_metadata(
                self,
                lower_bound,
                upper_bound,
                str_as_lit=False,
                allow_multi_output=False,
                to_single_output=False,
            ),
        )

    def mode(self) -> Self:
        r"""Compute the most occurring value(s).

        Can return multiple values.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 1, 2, 3], "b": [1, 1, 2, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.select(nw.col("a").mode()).sort("a")
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |          a       |
            |       0  1       |
            └──────────────────┘
        """
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).mode())

    def is_finite(self) -> Self:
        """Returns boolean values indicating which original values are finite.

        Warning:
            pandas handles null values differently from Polars and PyArrow.
            See [null_handling](../pandas_like_concepts/null_handling.md/)
            for reference.
            `is_finite` will return False for NaN and Null's in the Dask and
            pandas non-nullable backend, while for Polars, PyArrow and pandas
            nullable backends null values are kept as such.

        Returns:
            Expression of `Boolean` data type.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [float("nan"), float("inf"), 2.0, None]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(a_is_finite=nw.col("a").is_finite())
            ┌──────────────────────┐
            |  Narwhals DataFrame  |
            |----------------------|
            |shape: (4, 2)         |
            |┌──────┬─────────────┐|
            |│ a    ┆ a_is_finite │|
            |│ ---  ┆ ---         │|
            |│ f64  ┆ bool        │|
            |╞══════╪═════════════╡|
            |│ NaN  ┆ false       │|
            |│ inf  ┆ false       │|
            |│ 2.0  ┆ true        │|
            |│ null ┆ null        │|
            |└──────┴─────────────┘|
            └──────────────────────┘
        """
        return self._with_callable(lambda plx: self._to_compliant_expr(plx).is_finite())

    def cum_count(self, *, reverse: bool = False) -> Self:
        r"""Return the cumulative count of the non-null values in the column.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            reverse: reverse the operation

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": ["x", "k", None, "d"]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a").cum_count().alias("a_cum_count"),
            ...     nw.col("a").cum_count(reverse=True).alias("a_cum_count_reverse"),
            ... )
            ┌─────────────────────────────────────────┐
            |           Narwhals DataFrame            |
            |-----------------------------------------|
            |      a  a_cum_count  a_cum_count_reverse|
            |0     x            1                    3|
            |1     k            2                    2|
            |2  None            2                    1|
            |3     d            3                    1|
            └─────────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).cum_count(reverse=reverse),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def cum_min(self, *, reverse: bool = False) -> Self:
        r"""Return the cumulative min of the non-null values in the column.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            reverse: reverse the operation

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [3, 1, None, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a").cum_min().alias("a_cum_min"),
            ...     nw.col("a").cum_min(reverse=True).alias("a_cum_min_reverse"),
            ... )
            ┌────────────────────────────────────┐
            |         Narwhals DataFrame         |
            |------------------------------------|
            |     a  a_cum_min  a_cum_min_reverse|
            |0  3.0        3.0                1.0|
            |1  1.0        1.0                1.0|
            |2  NaN        NaN                NaN|
            |3  2.0        1.0                2.0|
            └────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).cum_min(reverse=reverse),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def cum_max(self, *, reverse: bool = False) -> Self:
        r"""Return the cumulative max of the non-null values in the column.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            reverse: reverse the operation

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a").cum_max().alias("a_cum_max"),
            ...     nw.col("a").cum_max(reverse=True).alias("a_cum_max_reverse"),
            ... )
            ┌────────────────────────────────────┐
            |         Narwhals DataFrame         |
            |------------------------------------|
            |     a  a_cum_max  a_cum_max_reverse|
            |0  1.0        1.0                3.0|
            |1  3.0        3.0                3.0|
            |2  NaN        NaN                NaN|
            |3  2.0        3.0                2.0|
            └────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).cum_max(reverse=reverse),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def cum_prod(self, *, reverse: bool = False) -> Self:
        r"""Return the cumulative product of the non-null values in the column.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            reverse: reverse the operation

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     nw.col("a").cum_prod().alias("a_cum_prod"),
            ...     nw.col("a").cum_prod(reverse=True).alias("a_cum_prod_reverse"),
            ... )
            ┌──────────────────────────────────────┐
            |          Narwhals DataFrame          |
            |--------------------------------------|
            |     a  a_cum_prod  a_cum_prod_reverse|
            |0  1.0         1.0                 6.0|
            |1  3.0         3.0                 6.0|
            |2  NaN         NaN                 NaN|
            |3  2.0         6.0                 2.0|
            └──────────────────────────────────────┘
        """
        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).cum_prod(reverse=reverse),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def rolling_sum(
        self,
        window_size: int,
        *,
        min_samples: int | None = None,
        center: bool = False,
    ) -> Self:
        """Apply a rolling sum (moving sum) over the values.

        A window of length `window_size` will traverse the values. The resulting values
        will be aggregated to their sum.

        The window at a given row will include the row itself and the `window_size - 1`
        elements before it.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            window_size: The length of the window in number of elements. It must be a
                strictly positive integer.
            min_samples: The number of values in the window that should be non-null before
                computing a result. If set to `None` (default), it will be set equal to
                `window_size`. If provided, it must be a strictly positive integer, and
                less than or equal to `window_size`
            center: Set the labels at the center of the window.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_rolling_sum=nw.col("a").rolling_sum(window_size=3, min_samples=1)
            ... )
            ┌─────────────────────┐
            | Narwhals DataFrame  |
            |---------------------|
            |     a  a_rolling_sum|
            |0  1.0            1.0|
            |1  2.0            3.0|
            |2  NaN            3.0|
            |3  4.0            6.0|
            └─────────────────────┘
        """
        window_size, min_samples_int = _validate_rolling_arguments(
            window_size=window_size, min_samples=min_samples
        )

        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).rolling_sum(
                window_size=window_size,
                min_samples=min_samples_int,
                center=center,
            ),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def rolling_mean(
        self,
        window_size: int,
        *,
        min_samples: int | None = None,
        center: bool = False,
    ) -> Self:
        """Apply a rolling mean (moving mean) over the values.

        A window of length `window_size` will traverse the values. The resulting values
        will be aggregated to their mean.

        The window at a given row will include the row itself and the `window_size - 1`
        elements before it.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            window_size: The length of the window in number of elements. It must be a
                strictly positive integer.
            min_samples: The number of values in the window that should be non-null before
                computing a result. If set to `None` (default), it will be set equal to
                `window_size`. If provided, it must be a strictly positive integer, and
                less than or equal to `window_size`
            center: Set the labels at the center of the window.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_rolling_mean=nw.col("a").rolling_mean(window_size=3, min_samples=1)
            ... )
            ┌──────────────────────┐
            |  Narwhals DataFrame  |
            |----------------------|
            |     a  a_rolling_mean|
            |0  1.0             1.0|
            |1  2.0             1.5|
            |2  NaN             1.5|
            |3  4.0             3.0|
            └──────────────────────┘
        """
        window_size, min_samples = _validate_rolling_arguments(
            window_size=window_size, min_samples=min_samples
        )

        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).rolling_mean(
                window_size=window_size,
                min_samples=min_samples,
                center=center,
            ),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def rolling_var(
        self,
        window_size: int,
        *,
        min_samples: int | None = None,
        center: bool = False,
        ddof: int = 1,
    ) -> Self:
        """Apply a rolling variance (moving variance) over the values.

        A window of length `window_size` will traverse the values. The resulting values
        will be aggregated to their variance.

        The window at a given row will include the row itself and the `window_size - 1`
        elements before it.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            window_size: The length of the window in number of elements. It must be a
                strictly positive integer.
            min_samples: The number of values in the window that should be non-null before
                computing a result. If set to `None` (default), it will be set equal to
                `window_size`. If provided, it must be a strictly positive integer, and
                less than or equal to `window_size`.
            center: Set the labels at the center of the window.
            ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_rolling_var=nw.col("a").rolling_var(window_size=3, min_samples=1)
            ... )
            ┌─────────────────────┐
            | Narwhals DataFrame  |
            |---------------------|
            |     a  a_rolling_var|
            |0  1.0            NaN|
            |1  2.0            0.5|
            |2  NaN            0.5|
            |3  4.0            2.0|
            └─────────────────────┘
        """
        window_size, min_samples = _validate_rolling_arguments(
            window_size=window_size, min_samples=min_samples
        )

        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).rolling_var(
                window_size=window_size, min_samples=min_samples, center=center, ddof=ddof
            ),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def rolling_std(
        self,
        window_size: int,
        *,
        min_samples: int | None = None,
        center: bool = False,
        ddof: int = 1,
    ) -> Self:
        """Apply a rolling standard deviation (moving standard deviation) over the values.

        A window of length `window_size` will traverse the values. The resulting values
        will be aggregated to their standard deviation.

        The window at a given row will include the row itself and the `window_size - 1`
        elements before it.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            window_size: The length of the window in number of elements. It must be a
                strictly positive integer.
            min_samples: The number of values in the window that should be non-null before
                computing a result. If set to `None` (default), it will be set equal to
                `window_size`. If provided, it must be a strictly positive integer, and
                less than or equal to `window_size`.
            center: Set the labels at the center of the window.
            ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.

        Returns:
            A new expression.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
            >>> df = nw.from_native(df_native)
            >>> df.with_columns(
            ...     a_rolling_std=nw.col("a").rolling_std(window_size=3, min_samples=1)
            ... )
            ┌─────────────────────┐
            | Narwhals DataFrame  |
            |---------------------|
            |     a  a_rolling_std|
            |0  1.0            NaN|
            |1  2.0       0.707107|
            |2  NaN       0.707107|
            |3  4.0       1.414214|
            └─────────────────────┘
        """
        window_size, min_samples = _validate_rolling_arguments(
            window_size=window_size, min_samples=min_samples
        )

        return self.__class__(
            lambda plx: self._to_compliant_expr(plx).rolling_std(
                window_size=window_size,
                min_samples=min_samples,
                center=center,
                ddof=ddof,
            ),
            self._metadata.with_kind_and_closeable_window(ExprKind.WINDOW),
        )

    def rank(self, method: RankMethod = "average", *, descending: bool = False) -> Self:
        """Assign ranks to data, dealing with ties appropriately.

        Notes:
            The resulting dtype may differ between backends.

        !!! info
            For lazy backends, this operation must be followed by `Expr.over` with
            `order_by` specified, see [order-dependence](../basics/order_dependence.md).

        Arguments:
            method: The method used to assign ranks to tied elements.
                The following methods are available (default is 'average'):

                - 'average' : The average of the ranks that would have been assigned to
                  all the tied values is assigned to each value.
                - 'min' : The minimum of the ranks that would have been assigned to all
                    the tied values is assigned to each value. (This is also referred to
                    as "competition" ranking.)
                - 'max' : The maximum of the ranks that would have been assigned to all
                    the tied values is assigned to each value.
                - 'dense' : Like 'min', but the rank of the next highest element is
                   assigned the rank immediately after those assigned to the tied
                   elements.
                - 'ordinal' : All values are given a distinct rank, corresponding to the
                    order that the values occur in the Series.

            descending: Rank in descending order.

        Returns:
            A new expression with rank data.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [3, 6, 1, 1, 6]})
            >>> df = nw.from_native(df_native)
            >>> result = df.with_columns(rank=nw.col("a").rank(method="dense"))
            >>> result
            ┌──────────────────┐
            |Narwhals DataFrame|
            |------------------|
            |       a  rank    |
            |    0  3   2.0    |
            |    1  6   3.0    |
            |    2  1   1.0    |
            |    3  1   1.0    |
            |    4  6   3.0    |
            └──────────────────┘
        """
        supported_rank_methods = {"average", "min", "max", "dense", "ordinal"}
        if method not in supported_rank_methods:
            msg = (
                "Ranking method must be one of {'average', 'min', 'max', 'dense', 'ordinal'}. "
                f"Found '{method}'"
            )
            raise ValueError(msg)

        return self._with_callable(
            lambda plx: self._to_compliant_expr(plx).rank(
                method=method, descending=descending
            )
        )

    @property
    def str(self) -> ExprStringNamespace[Self]:
        return ExprStringNamespace(self)

    @property
    def dt(self) -> ExprDateTimeNamespace[Self]:
        return ExprDateTimeNamespace(self)

    @property
    def cat(self) -> ExprCatNamespace[Self]:
        return ExprCatNamespace(self)

    @property
    def name(self) -> ExprNameNamespace[Self]:
        return ExprNameNamespace(self)

    @property
    def list(self) -> ExprListNamespace[Self]:
        return ExprListNamespace(self)

    @property
    def struct(self) -> ExprStructNamespace[Self]:
        return ExprStructNamespace(self)


__all__ = [
    "Expr",
]
